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Abstract

Generative Adversarial Neural Networks (GANs) have recently achieved state-of-art
performance for image synthesis and have been used to generate high-quality im-
ages of faces, animals, and 3D scenes. In this work, we explore the use of GANs
in the medical computer vision field, where datasets are usually more scarce and
require expert annotations. We demonstrate that GANs can be used to generate
high-detailed images of medical objects, such as high-resolution microscopical organ
tissue scans. In particular, we focus on the UniToPatho dataset, which contains
Hematoxylin and Eosin stained (H&E) colorectal histopathological scans, and eval-
uate the performance of synthetic images used as an augmentation approach for
classification tasks. To further improve the classification accuracy, we propose a
new image-to-image StyleGAN-based model that is able to transform segmentation
masks of nuclei into realistic tissues. Our model drastically improves the generation
quality over previous approaches for the UniToPatho dataset and, most importantly,
allows to exploit prior medical knowledge about the tissue morphology, by manually
guiding the synthesis process for a more precise augmentation.
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Chapter 1

Introduction

The advances of deep learning in classification and computer vision have pushed
the frontier of automatic medical diagnosis and computer-aided diagnosis. Recently,
the application of deep learning to medical diagnosis has become a topic of great
interest, including the fields of radiology, cardiology, and pathology. In particular,
deep learning in pathology has shown promising results, with the development of
algorithms that can be trained on large amounts of data to automatically detect and
segment tumor tissue in digitized pathology images. These computer-aided tumor
detection and segmentation algorithms can potentially support pathologists in their
diagnostic task. The adoption of such models can have an enormous impact on the
clinical decisions made by pathologists, so it is crucial to ensure that the models
are accurate and robust enough. One way to achieve high precision and accuracy
without over-fitting the models is to use large amounts of data to catch the variety
of cases that can be seen in the clinical world. However, collecting large databases
of real world data for a niche diagnosis field can be challenging. First, the data
collection process is costly, because it requires the use of special equipment, trained
medical personnel, and increasingly, regulatory approval. Second, the data should
be collected from multiple sources and institutions to avoid bias[41]. Finally, data
sharing is also challenging because of privacy and regulatory concerns.

In this context, generative models have shown great promise because they can
generate realistic synthetic images that can be used to train models and to perform
data augmentation. Using synthetic images can have several benefits, including
the generation of large datasets that can be used to train robust models, and the
ability to generate images that can augment the training dataset to improve the
performance of existing models. In particular, Generative Adversarial Networks
(GANs)[15] have shown noticeable results in generating realistic images in a wide
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range of applications, including synthesis of realistic photographs of faces, natural
scenes, and medical images [27]. In addition, GANs can be used to generate new
images from control points [6], to interpolate between existing images [64], and to
generate sequences of images [63]. Furthermore, the idea of using GANs for medical
imaging has been researched in a lot of different studies and tasks [32, 58, 60], ranging
from segmentation[57, 35], to synthesis[7, 22] and semi-supervised classification[23].

1.1 Colorectal cancer

Colorectal cancer is the third most common type of cancer in both men and women[52],
although it can often be prevented through regular screenings and early detection.
It usually starts as a small polyp, a clump of cells forming on the colon or rectum
lining. Most polyps are benign; however, some can become cancer over time. There
are various parameters for determining the danger of this transformation that pathol-
ogists evaluate: the type of polyp, their size and the degree of dysplasia. The type of
polyp is determined by its appearance and the three most common types are tubular
adenomas, villous adenomas and tubulovillous adenomas. The size of the polyp is
also taken into account when determining its danger level. Smaller polyps have a
lower chance of becoming cancer than larger ones; however, even small polyps should
be removed if they show any signs of dysplasia (abnormal cell growth). Dysplasia
can be graded on a scale from low to high: low-grade dysplasia means that the ab-
normal cells are only slightly different from normal cells and are unlikely to become
cancer; high-grade dysplasia means that the abnormal cells look very different from
normal cells and have a greater chance of turning into cancer. Polyps with high-grade
dysplasia should be removed immediately as they pose the greatest threat.

1.2 Focus of our research

We focus our research on UniToPatho [3], a dataset containing Hematoxylin and
Eosin stained (H&E) colorectal histopathological scans. One of the main purposes
of the dataset is to enable the development of automatic prediction of dysplasia grade
of colorectal polyps to support pathologists for more accurate diagnosis.

The dataset has been studied in three main areas. Firstly, Barbano et al.[3]
developed a model for automatic tissue classification. Secondly, Di Luccio et al.[9]
introduced a segmentation model that is capable of extracting and classifying nuclei
contained in the images. Finally, Rubinetti et al.[49] proposed a generative model
that is able to reconstruct segmentation masks of nuclei into realistic tissues.
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All of the studies encountered difficulties mainly related to the small size of the
dataset. In particular, the core obstacle of the dataset is driven by the lack of high
dysplasia grade samples, which produces a strong imbalance in the data distribution.

For these reasons, we focus on building new generative models capable of syn-
thesising new samples that can be used to augment the UniToPatho dataset. The
purpose of such augmentations is to allow for an improved precision of automatic
diagnosis.

1.3 Contributions

The main contributions of this thesis are the analysis of the application of GANs to
the UniToPatho dataset and the improvement over prior generative techniques.

Automatic image synthesis

First, we propose different models of GANs applied to the UniToPatho dataset. We
show that GANs are capable of learning the salient charachteristics of the dataset
on different resolutions and can be used to generate high-quality tissues undistin-
guishable from real ones. We analyze the quality of the GANs by exploring the
characteristics of the latent space through interpolation and by exploiting the Dis-
criminator as an unsupervisedly-trained feature extractor that can be extended for
classification. Subsequently, we synthesize various datasets and use them as augmen-
tation for classification models. We show that this augmentation approach allows
us to achieve slight improvements in accuracy, but the GANs still suffer from the
imbalance of the dataset.

Improved image-to-image translation

With the goal of further increasing the classification precision, we extend our GAN
model with additional inputs that can guide the Generator in the synthesis process.
The generation of images in GANs is usually guided by normally distributed random
values, as described later in section 2.8. However, the synthesis can be further
conditioned by prior factors, which in our case are segmentation masks of nuclei. A
similar approach has already been proposed by Rubinetti et al.[49]. We show that
with an additional Encoder network that injects the segmentation masks of nuclei
into the synthesis process of a sophisticated StyleGAN [28] based model, we are able
to dramatically improve the quality of the generations over prior work. This allows
us to further exploit prior expert medical knowledge to generate more meaningful
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synthetic samples by manually guiding the synthesis towards the underrepresented
high-grade dysplasia class, and eventually increase the classification accuracy.
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Chapter 2

Introduction to Neural Networks

In this chapter we provide a brief introduction to all the concepts of neural networks
and deep learning used later in the thesis.

2.1 Automatic Differentiation

Neural networks are machine learning models capable of approximating arbitrary
mappings from one finite dimensional space to another [21]. A neural network can
be seen as a function f parameterized by a set of parameters θ and applied to an
input x:

ŷ = f(x,θ)

Internally, the neural network consists of a sequence of differentiable operations ma-
nipulating both x and θ, producing a final result ŷ. The core idea behind neural
networks is to approximate a real mapping f : X → Y by using a finite set of pairs
of inputs x ∈ X and outputs y ∈ Y and properly adjust the parameters θ such
that the function f approximates f . One of the most common ways to learn these
parameters is to minimize a differentiable loss function L that computes an error
measure between ŷ and y.

Since every operation of the loss L is differentiable by choice, one way to minimize
it is to apply the chain rule of calculus and minimize its partial derivative with respect
to θ:

∂

∂θ
L(f(x,θ),y)

The number of parameters of neural networks and functions applied to them has
grown rapidly, with billions of parameters being the norm nowadays, which makes
the computation of the closed-form of the derivatives computationally too expensive.
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Instead of computing the full closed-form derivatives, another way to solve the
problem is to view the function as a Directed Acyclic Graph (DAG) defined over the
operations used internally. During the computation of the function, also referred to
as the forward pass, the intermediate results are memoized, thus allowing gradients
to be efficiently computed in a backward pass with the same time complexity of the
forward pass.

For example, suppose we have the following function:

f(x, w1, w2, w3) = w1x
2 + w2x+ w3 (2.1)

We can decompose all the operations in the following equivalent way:

y = d+ w3

d = b+ c

b = w1g

g = x2

c = w2x

b
+

*

y+

w3

x

*

pow2

w2 c

d

w1

g

Figure 2.1: The DAG describing the computation of the function defined in 2.1.
Square nodes refer to variables and intermediate results. Ellipse nodes represent
operations with arguments coming from the result of the source nodes of incoming
arrows.

Now, to compute the derivative of y with respect to all the intermediate variables
we can simply apply the chain rule going backward from the final output y in the
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computation graph shown in Figure 2.1:

∂y

∂d
= 1

∂y

∂w3

= 1

∂y

∂b
=

∂y

∂d

∂d

∂b
= 1

∂y

∂c
=

∂y

∂d

∂d

∂c
= 1

∂y

∂g
=

∂y

∂b

∂b

∂g
= w1

∂y

∂w1

=
∂y

∂b

∂b

∂w1

= g

∂y

∂w2

=
∂y

∂c

∂c

∂w2

= x

∂y

∂x
=

∂y

∂g

∂g

∂x
+

∂y

∂c

∂c

∂x
= 2w1x+ w2

(2.2)

As shown in Equation 2.2, once we reached a node, we were able to locally compute
the partial derivatives by simply considering the precomputed derivative of directly
connected nodes, without having to apply the full chain rule down to the root. This
was possible because we intentionally followed a strict order in the derivation, a
topological order starting from the output y, which guarantees that once a node is
reached, all its connected nodes’ gradients are computed. This process of efficiently
propagating gradients through the network is also known as backpropagation, which
is a specific use of the more general method of automatic differentiation and is au-
tomatically applicable only to acyclic graphs.

Automatic differentiation is at the core of today’s most advanced neural network
engines such as PyTorch[42] and JAX[4].

2.1.1 Stochastic Gradient Descent

In order to minimize the loss function, the weights must be adjusted properly. This
adjustment can be guided by the gradient, which determines in which direction to
update the weights such that the error decreases, also known as Gradient Descent.
The most accurate gradient computation can be obtained by computing the loss over
the whole dataset. However, this would result in the whole computation graph for
all the examples being kept in memory, which is not applicable to large datasets.
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For this reason, Stochastic Gradient Descent is usually preferred instead. SGD ap-
proximates the full gradient by applying the backpropagation step with randomly
selected examples. An extension of SGD is the mini-batch SGD, which accumulates
the gradients of batches of examples and then applies backpropagation.

2.2 Architecting Neural Networks

Neural networks nowadays scale to billions of parameters, so defining them as plain
functions at a low level, as shown in the previous section, is not applicable. Instead,
a more sophisticated approach is used, which allows to define high-level components
such as Neurons and Layers that can be combined together in any differentiable way.

2.2.1 Artificial Neuron

The most basic component of a neural network is the artificial neuron, also known as
the Perceptron[48]. It is a single unit containing a set of weights w. In the forward
pass, the perceptron takes a vector of inputs x, weights them through its weights w,
and (optionally) applies a differentiable activation function act:

f(x) = act(
∑

i

xiwi + b)

Additionally, the perceptron can have an optional bias parameter that is added
to the sum before the activation.

The weights of the perceptron are updated during training with gradient descent.
Given a learning rate ¸ which scales the gradients and a loss function L, following the
idea of automatic differentiation described in section 2.1, each weight wi is updated
according to the partial derivative:

w′
i = wi − ¸

∂L

∂wi

The same rule also applies for the bias.

2.2.2 Layers of neurons and Multi-Layer Perceptron

A layer of neurons contains multiple neurons stacked together. Each input is propa-
gated through each neuron and the output of the layer is the set of outputs of each
neuron. A layer in-between the inputs and the outputs of the network is referred to
as a hidden layer.
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Recall the idea that an artificial neuron is a function f , a layer of n neurons
is thus a sequence of functions f1, f2, . . . fn. The forward pass of the layer can be
described as:

g(x) = {f1(x), f2(x), . . . fn(x)}

Another way to view a layer of n neurons is to consider all the weights of the neruons
together in a single matrix W of size m× n, where m is the size of the inputs, with
an additional vector of biases b containing the bias of each neuron. Under this
perspective, the forward function can be defined as:

g(x) = act(Wx+ b)

Similarly to neurons, layers can also be stacked sequentially, producing a com-
position of functions. A sequence of fully-connected layers defines the well-known
architecture of the Multi-Layer Perceptron.

Figure 2.2: Example of perceptron.
Figure 2.3: Neural network with a hid-
den layer.

2.3 Training Neural Networks

Suppose we are given the dataset D = {([0, 0], 0), ([0, 1], 1), ([1, 0], 1), ([1, 1], 0)},
where in each pair the first element is the input and the second element is the
output, and that we want to learn a mapping between the data. We can use a neural
network to learn to predict the outputs given only the inputs. A suitable network
for this task is the one described in Figure 2.3. It has two hidden neurons and one
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output neuron. As an activation function for each neuron we can use the sigmoid
function, which has the same codomain of our data:

g : R → R

x 7→
1

1 + e−x

The full forward pass of our network is then:

f(x0, x1) = g(w4g(w0x0 + w2x1 + b0) + w5g(w1x0 + w3x1 + b1) + b2)

Now, our goal is to find a set of ws and bs such that for all ([x0, x1], y) in the dataset
f(x0, x1) = y. In order to achieve this goal, we can use gradient descent to minimize
a loss function that determines an error measure between the outputs of f and the
expected ys in the dataset. A useful loss function for this task is the binary cross-
entropy:

H = −
1

|D|

∑

x0,x1,y∈D

(y · log f(x0, x1) + (1− y) · log (1− f(x0, x1))

Now we can randomly initialize the weights and biases and repeatedly update them
in the direction of the gradient. For example, suppose that we initialize the weights
and biases to:

w0 w2 b0 w1 w3 b1 w4 w5 b2

-0.27 -1.38 -0.51 0.35 -0.72 0.18 -1.03 0.19 2.62
If we compute the forward pass for the inputs we obtain f(0, 0) = 0.91, f(0, 1) = 0.93,
f(1, 0) = 0.92, and f(1, 1) = 0.93. The loss function applied to the full dataset
results in 1.32. Now, if we apply the backpropagation pass described in section 2.1,
we compute the following gradients:

gw0 gw2 gb0 gw1 gw3 gb1 gw4 gw5 gb2

-0.02 -0.02 -0.07 0.01 0.01 0.02 0.10 0.21 0.42
Now we apply the update rule and simply subtract the gradients to the relative
weights, obtaining the following new weights:

w0 w2 b0 w1 w3 b1 w4 w5 b2

-0.25 -1.36 -0.44 0.34 -0.73 0.16 -1.13 -0.02 2.20
As a result, if we compute the loss function with these new parameters, it decreases
to 1.09. If we repeat the same process for 1000 steps, the loss decreases to 0.02 with
the following weights:

w0 w2 b0 w1 w3 b1 w4 w5 b2

-6.84 -6.55 2.59 4.56 4.53 -7.03 -9.83 -9.93 4.85
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With the above operations we have effectively trained our neural network to ap-
proximate a suitable mapping for our dataset. The predictions of our network with
these weights are f(0, 0) = 0.01 ≈ 0, f(0, 1) = 0.98 ≈ 1, f(1, 0) = 0.98 ≈ 1,
f(1, 1) = 0.02 ≈ 0, which are the expected values that we wanted to learn to predict
given only the inputs. The initial landscape of the function before the training is
visible in Figure 2.4, whereas the landscape at the end of the training is visible in
Figure 2.5.

Figure 2.4: The initial landscape of the
function f introduced in section 2.3

Figure 2.5: The learned landscape of the
function f introduced in section 2.3

2.4 Convolutional Neural Networks

When dealing with image datasets, fully connected layers can produce very heavy
networks in terms of number of parameters. For instance, a layer with just 100
outputs applied to an image of 512× 512× 3 (RGB pixels) size requires more than
7M parameters. Even though nowadays state-of-the-art networks exploit such large
layers with sophisticated layers [56, 11, 54, 5], most deep neural networks usually
employ particular layers called Convolutional Layers, which, as the name suggests,
apply a convolution over the inputs. The parameters of convolutional layers are the
weights of the kernels with a fixed small size. These layers are also very efficient to
train, since the small size forces the learning of generally applicable filters, such as
shape extraction. For instance, given an input matrix X of size n×n and a kernel K
of size m×m, the result of the convolution (assuming a stride of 1) is a new matrix
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Y of size n−m+ 1× n−m+ 1 defined as follows:

Yij =
m−1
∑

k=0

m−1
∑

l=0

Kk,l ∗Xi+k,j+l

0.8 0.5 0.2 0.8 0.6 0.9

0.6 0.1 0.3 0.6 0.1 0.2

0.8 0.8 0.5 0.9 0.3 0.9

0.3 0.3 0.3 0.6 0.9 0.5

0.9 0.8 0.3 0.0 0.6 0.4

0.5 0.1 1.0 0.9 0.7 0.8

∗

0.9 0.1 0.0 0.1

0.0 0.1 0.8 0.2

0.6 0.3 0.2 0.2

0.1 0.8 0.3 0.7

=
3.1 3.1 2.5

2.6 2.4 2.1

3.2 3.8 3.5

0.9 0.1 0.0 0.1

0.0 0.1 0.8 0.2

0.6 0.3 0.2 0.2

0.1 0.8 0.3 0.7

Figure 2.6: The execution of a convolution. On the left the input matrix. In the
middle the kernel. On the right the output.

2.4.1 Residual connections

Stacking deep neural networks has provided a lot of advantage when dealing with
complex machine learning tasks [53, 36]. However, up until 2015, extremely deep
networks were actually starting to hit a bottleneck, where the increase of depth
complicated the propagation of gradient, resulting in vanishing gradients. Figure 2.7
shows how the depth increase was not leading to overfitting, which is expected to
happen theoretically, instead it was leading to a degradation into a local minima.
By the end of 2015, a breakthrough solution was proposed by He et al.[19], which
introduced the use of residual connections. The idea is to use particular convolutional
blocks that facilitate the propagation of inputs down to the deepest outputs. The
output of each block of convolutions becomes, in the simplest case, the plain input
added to the output of the convolutions, as shown in Figure 2.8. This simple yet
powerful solution allowed to scale the advantages of deep architectures by enabling
the gradients to flow deeper in the backpropagation pass (Figure 2.9). The models
proposed by the authors are called ResNets and are categorized by their depth,
ranging from 18 layers (ResNet-18) to 152 layers (ResNet-152). The ResNet blocks
have become the building blocks of today’s state-of-the-art models.
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Figure 2.7: Training error (left) and test error (right) on CIFAR-10 with 20-layer
and 56-layer “plain” networks [19].

Figure 2.8: Residual connections [19]

Figure 2.9: Training on CIFAR-10. Dashed lines denote training error, and bold
lines denote testing error. Left: plain networks. Right: ResNets[19].
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2.5 Autoencoders

Autoencoders are a class of neural networks composed of two main components: an
Encoder and a Decoder (Figure 2.10). The idea of the autoencoder is to learn an
encoding function f that encodes the input into a latent space h = f(x) and then
decode it with an additional decoding function g such that x̂ = g(h). In other words,
the autoencoder network learns the identity function I = f ◦g. Training the network
consists in minimizing a reconstruction loss function:

L(g(f(x)),x)

One of the purpose of these models is to learn a compression function capable of
mapping input data to an intermediate space containing the most salient character-
istics of the inputs, so that the decoder can losslessly reconstruct them. Furthermore,
once the encoding function is learned, it can be reused for different tasks, such as
classification and regression.

Figure 2.10: The autoencoder network.

2.6 Variational Autoencoders

Variational Autoencoders (VAE) were introduced in 2013 by Kingma andWelling [34].
The idea is to extend autoencoders within a probabilistic setting, by forcing them to
learn a mapping to a probability distribution. Instead of using the encoder as a di-
rect mapping from the input to a latent space, it is used as a function that computes
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the parameters of a probability distribution. For instance, if a Gaussian distribution
is used, the encoder maps the input to the mean and variance of the distribution. A
random latent vector is then sampled from the parametrized distribution. The en-
coder can be seen as an estimator for a posterior q(z|x), and the reparametrization
can be interpreted as a random sampling from q(z|x). Finally, the decoder represents
an estimator for the true posterior distribution p(x|z). Under this perspective, the
loss function for a VAE consists of two terms[45]

−DKL(q(z|x)∥p(z)) + log p(x|z).

The first term is the Kullback-Leibler divergence, which enforces the approximate
posterior distribution q(z|x) and the model prior p(z) to converge. The second term
is the reconstruction penalty in the form of log-likelihood. The full measure is also
known as the Evidence Lower BOund (ELBO), or variational lower bound.

The structure of VAEs allows to learn a continuous latent space capable of gener-
ating new samples by randomly drawing latent vectors from a given set of parameters.

2.7 U-Nets for Image Segmentation

U-Net [47] is a convolutional neural network architecture developed specifically for
biomedical image segmentation. In addition to the architecture, the authors also
provide insights on how to deal with low amount of data through data augmen-
tation. The network is similar to an autoencoder, except for the fact that there
are skip connections from each downsampling output to its corresponding resolution
upsampling layer (Figure 2.11). Since these networks are only composed by convo-
lutions, they can be applied to any input size. The network is trained on images and
their segmentation maps, with the inputs being the raw images and outputs repre-
senting the segmentations. The proposed loss function for training these models is
the cross-entropy applied on the soft-max on channel-wise scale, where each channel
corresponds to a segmentation class.

2.8 Generative Adversarial Neural Networks

Generative Adversarial Networks [15] (GANs) are a class of neural networks used for
generative modeling. They are formed by two neural networks competing against
each other in an adversarial way. One is the generator network and the other is
the discriminator: the generator network g is responsible for generating samples
x = g(z;θg), while the discriminator network d learns to distinguish between real
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Figure 2.11: U-Net[47]

and generated samples. More precisely, the discriminator computes a probability
d(x;θd) indicating whether x is a real example drawn for the real dataset or is a
generated example produced by the generator. In practice, the generator network
receives a random vector as input, usually drawn from a normal distribution, where
each value is responsible for determining some characteristic of the generation.

Both networks are trained independently with two losses. The discriminator
network learns to maximize its output when shown real samples, and minimize it
when shown fake ones. On the other hand, the generator network never gets to
see real samples. In fact, the generator network learns to maximize the output
of the discriminator, trying to “fool” it into predicting that the generated images
are actually real. In other words, the two networks are competing in a zero-sum
game, where a function J(θ(g),θ(d)) determines the reward of the discriminator,
which results in the opposite reward for the generator −J(θ(g),θ(d)). Under this
perspective, one network is trained to minimize the reward of the other and vice
versa:

min
g

max
d

J(d, g) = Ex∼pdata(x)[log d(z)] + Ez∼pz(z)[log(1− d(g(z)))]

However, it can be shown that using this loss the gradients for the generator network
do not flow sufficiently, since log(1− d(g(z))) saturates [15]. For this reason, instead
of training the generator to minimize log(1− d(g(z))), Goodfellow et al. [15] suggest
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to heuristically train the generator to maximize log(d(g(z))), also known as non-
saturating loss.

2.8.1 Deep Convolutional GANs

As shown earlier, convolutional layers allow to dramatically increase the scalability
and efficiency of neural networks when dealing with images. This also holds for
GANs used for image generation. The first use of convolutions for image generation
was proposed with the Deep Convolutional Generative Adversarial Networks (DC-
GAN) [43]. The idea of DCGANs is to use convolutions in a reverse way during the
generation, with this operation being known as Deconvolution (or transposed convo-
lution) [61]. The generator network proposed by Radford et al. [43] uses a randomly
sampled latent vector z of size 100 as input, which gets projected into a 1024× 4× 4
space through a fully connected layer. After this projection, transposed convolutions
are used to halve the number of channels and double the resolution size of previous
layer’s output. After each convolution the authors apply a ReLU activation function
with Batch Normalization[25]. Finally, the output of the model is passed through a
tanh activation function. On the other hand, the discriminator network is based on
standard convolutional layers, LeakyReLU and Batch Normalization. The introduc-
tion of Deconvolutions in the GANs allowed to achieve impressive results in image
synthesis and become the standard building block for state-of-the-art GANs.

Figure 2.12: The generator network of a Deep Convolutional Generative Adversarial
Network [43].

17



2.8.2 Wasserstein GAN

The original optimization technique proposed for GANs resulted in convergence is-
sues and encouraged research towards alternative approaches. One remarkable so-
lution to the convergence problem was proposed by Arjovsky et al.[2] with the in-
troduction of Wasserstein GANs. The authors propose a loss function based on the
Wasserstein-1 (or Earth Mover, EM) distance. They prove that there are many prob-
ability distributions (such as a uniform distribution on unit interval) that are math-
ematically impossible to approach each other under the Kullback-Leibler or Jensen-
Shannon divergences, but successfully converge under the EM distance. However,
the authors also show that using this loss requires hard constraints on the weights
of the networks to be enforced. In particular, they show that every parameter must
lie in a compact space (Lipschitz constraint). They propose two variants of enforc-
ing this constraint: one variant is a simple clipping of the weights to some constant
range, and the other is a projection of the weights to a sphere. However, these con-
straints inevitably lead to vanishing gradients, so the research on the most suitable
enforcement of the Lipschitz constraint in neural networks is still open. The authors
still succeed in employing the loss in a GAN and show remarkable advantages in
the gradient descent, as shown in Figure 2.13. Nevertheless, the research on efficient
GAN losses and regularization is still under discussion [16, 39, 40].

2.8.3 Conditional GANs

GANs can additionally be conditioned during the generation: instead of sampling
images just from random vectors, conditional GANs also make use of high-level
features, such as hair style, pose and emotion in the context of face generation.
These labels are injected into the input of both the generator and the discriminator
networks, forcing the discriminator to learn to distinguish different labels and the
generator to generate samples with specific labels.

2.8.4 Adversarial image-to-image translation

Conditional GANs successfully generate random images with manually selected fea-
tures such as high-level object classes. An even deeper conditioning of GANs was
introduced with the Pix2Pix[26] paper, where Isola et al. achieve remarkable results
in image-to-image translation through GANs. The idea is to use a U-Net as a gener-
ator network and a traditional convolutional discriminator and training them in an
adversarial way. The generator uses images as both inputs and outputs and learns
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Figure 2.13: Two Gaussian distributions describing the real and fake samples used
to compare the gradients of minimax GANs and WGANs. The GAN discriminator
is able to very accurately distinguish real and fake samples and provides no reliable
gradient information. On the other hand, the WGAN critic provides clean and linear
gradient in all parts of the space. The horizontal axis describes the single feature of
the data, whereas the vertical axis describes the density function of the two Gaussians
and the predictions of both the GAN Discriminator and WGAN Critic.

the mapping from the two spaces. The adversarial loss allows the networks to pro-
duce high-resolution images indistinguishable from real ones. The authors show that
the simple use of adversarial loss allows the network to be applicable to practically
any image-to-image translation task.

2.8.5 StyleGAN

The most advanced GAN architecture for image generation is StyleGAN[28]. It was
introduced by Karras et al. in 2018 and still remains state-of-the-art in realistic gen-
erative image modeling. It is based on the idea of style transfer[14], which is the
process of taking the style of one image and transferring it to another image. How-
ever, in the generative world, this style is actually learned and extracted from the
latent space. In fact, the StyleGAN model has two latent spaces: the first is the usual
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Z space, where all the values are picked randomly following a normal distribution.
The Z vectors are then mapped through a sequence of fully connected layers, along
with high-level conditional features, into a new intermediate latent space, the W
space. The Generator network is indeed divided into two sub-networks, a mapping
network f : Z 7→ W and a synthesis network g : W 7→ Y . The synthesis network
starts from a learned constant input of size 512× 4× 4 which is propagated through
a sequence of synthesis blocks. Each synthesis block consists of the following trans-
formations: an upsampling of the previous block, a 3× 3 convolution, an additional
random noise, an adaptive instance normalization[24] layer guided by the W vectors,
another convolutional 3× 3 layer, an additional noise input, and finally a final nor-
malization layer guided by the W vectors. The loss function used by the authors is
based on a non-saturating loss (as introduced in section 2.8) along with path-length
regularization and an R1 gradient penalty regularization[39].

2.9 Regularization for GANs

2.9.1 Gradient penalty regularization

A common technique used in GANs to improve convergence is to introduce a gradient
penalty to penalize the discriminator from deviating from the Nash equilibrium[51].
One way to do so is to penalize the gradient of the discriminator only on real data.
This comes from the idea that when the generator reaches a true real data distribu-
tion level, the discriminator should not produce any gradient without suffering the
adversarial loss. This leads to a R1 regularization term proposed in [39]:

R1 =
µ

2
Ex∼Px

[∥∇D(x)∥2]

A similar regularization idea can be applied to fake data, where the discriminator
gradient is penalized on the generator distribution, also known as R2 regularization:

R2 =
µ

2
Ez∼Pz

[∥∇D(G(z)))∥2]

2.9.2 Perceptual path-length regularization

Perceptual path-length was initially introduced in [28] as a metric to evaluate the
quality of the Generator network. Subsequently, the authors proposed to use this
quantity as a regularization term[29]. Path-length regularization is used to encourage
the generator to generate images that are close to the training data in latent space
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Figure 2.14: The StyleGAN Model [28].

and to avoid drastic changes in the neighbourhood of the latent vectors. The path-
length regularization term is added to the loss function as follows,

Ew,y∼N (0,I)(∥J
T
wy∥ − a)2,

where y is a matrix of random images with normal pixel intensity distribution,
a ∈ R defines the desired scale of the gradient, w ∼ f(z), with z following a normal
distribution, and Jw is the Jacobian matrix ∂g(w)/∂w of the generator function
(which is not required to be explicitly computed, as it is efficiently derived through
backpropagation[2.1]).
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2.10 Quality metrics for GANs

2.10.1 Fréchet Inception Distance

Since GANs are trained in an unsupervised manner and the adversarial losses often
result in constant oscillation, it is difficult to know when to interrupt the training.
One of the most used methods to evaluate the quality of the generator distribution is
the use of classification models pretrained on big datasets, such as ImageNet[8], and
then measure the similarity between the features extracted from the real samples
and the generated samples. One such metric is the Fréchet Inception Distance[20]
introduced in 2017. Given a Gaussian (µr, Cr) and a Gaussian (µg, Cg), the FID is
defined as

d2 = ||µr − µg||
2 + Tr(Cr + Cg − 2

√

Cr · Cg),

where Tr is the sum along diagonals of the matrix.
In the context of GANs, one of the Gaussian distributions is parametrized by

the mean and covariance of the features extracted through a pretrained model from
the real dataset. The other distribution is represented by the mean and covariance
of the features extracted from a synthetic dataset with the same pretrained model.
It is common in literature to see results mentioning FID10k or FID50k: the suffix
refers to the size of the synthetic dataset, which in this case is 10 000 and 50 000
respectively.
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Chapter 3

Datasets

In this chapter we provide a description of the core datasets that we use later.

3.1 UniToPatho dataset

UniToPatho [3] is a histological dataset comprising different colorectal polyps samples
collected from patients undergoing cancer screening, consisting of 292 whole-slide
hematoxylin and eosin (H&E) stained images. The slides are acquired through a
Hamamatsu Nanozoomer S210 scanner at 20× magnification (0.4415 µm/px). Each
of the 292 slides is related to a unique patient and is annotated by expert pathologists.
There are 6 different classes:

• NORM: Normal tissue

• HP: Hpyerplastic Polyp

• TA.HG: Tubular Adenoma, High-Grade dysplasia

• TA.LG: Tubular Adenoma, Low-Grade dysplasia

• TVA.HG: Tubulo-Villous Adenoma, High-Grade dysplasia

• TVA.LG: Tubulo-Villous Adenoma, Low-Grade dysplasia

The dataset is provided with a split ratio of 70% for the training set and 30% for the
test set, resulting in 204 slides and 88 slides respectively. The authors also provide
two non-overlapping cropped versions consisting of 8669 square images with side of
800µm (1812 × 1812 pixels patches) and 867 square images with side of 7000µm
(15855× 15855 pixels patches). The main two tasks for the dataset are:
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• polyp type classification between NORM, HP, TA, TVA

• dysplasia grade classification between LG and HG

Crop Size HP NORM TA.HG TA.LG TVA.HG TVA.LG Total
Whole-slides 41 21 26 146 20 38 292

7000µm 59 74 98 411 93 132 867
800µm 545 950 454 3618 916 2186 8699

Table 3.1: UniToPatho class distribution

The dataset distribution is shown in Table 3.1. One characteristic of the dataset is
its size, with only 292 total samples. Additionally, it also contains a strong imbalance
in the class distribution. Out of 6 different classes, the TA.LG class alone counts
for half of the total dataset. Furthermore, when dealing with the dysplasia grade
classification task there are a total of 184 whole-slide samples for the low-grade class,
while for the high-grade class there are just 46 whole-slide samples. Considering the
provided train-test split, this means that there are only 32 unique whole-slide samples
available for training. As we show later, these imbalances have shown to be a crucial
obstacle when developing automatic classification algorithms.

Some examples of the dataset are visible in Figure 3.1.

3.2 PanNuke Dataset

PanNuke[13] is a histological dataset containing 19 different tissue types. Each tissue
is semi-automatically annotated, providing the classification of nuclei in 5 different
classes: inflammatory, neoplastic, connective, dead, and epithelial. It is built upon
more than 20k whole slide images collected at different magnifications and from
multiple data sources. The dataset allows to train models capable of generalizing
segmentations to new tissue types. This generalization power has been further con-
firmed for the UniToPatho dataset[9].
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Figure 3.1: 1812px resolution images from the UniToPatho dataset. Classes from
left to right, top to bottom: HP, NORM, TA.HG, TA.LG, TVA.HG, TVA.LG

Figure 3.2: Samples from exhaustively annotated PanNuke dataset, which contains
image patches from 19 tissue types for nuclei instance segmentation and classification
(Red: Neoplastic; Green: Inflammatory; Dark Blue: Connective; Yellow: Dead;
Orange: Epithelial)[13]
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Chapter 4

Related Work

In this chapter we provide an overview on related works covering UniToPatho [3]
and the applications of GANs to medical computer vision.

4.1 GANs for Medical Computer Vision

The generative power of GANs has raised a lot of interest for medical imaging,
especially when dealing with small and unbalanced datasets. Many works [32, 58, 60]
show that GANs can be used to generate synthetic data that can be used to improve
classification tasks.

Stain normalization

Histological images use stain to highlight different parts of the biological tissues.
The stain process can vary from one laboratory to another, so it is common to
encounter inconsistencies between datasets. For this reason, Xu et al. [59] focus on a
GAN-based model with the goal of normalizing the stain of different datasets. They
propose a conditional CycleGAN [63] network to transform H&E stained images into
IHC stained images. They show that even with a limited amount of data they are
able to succeed in the normalization task.

Style transfer

Hou et al. [22] propose a GAN applied to histopathological data as a style-transfer
method. They first train a model capable of generating synthetic histopathology im-
ages with desired characteristics such as locations and sizes of nuclei. Then they use
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a GAN model that modifies the synthetic images by transfering the style of randomly
selected real samples. Finally, they build a synthesis pipeline for a histopathological
segmentation task and achieve a 6% improvement in segmentation error.

Synthesis for augmentation

Frid-Adar et al. [12] apply GAN models to a limited dataset of computed tomography
(CT) images of liver lesions. They first train a GAN model on the real data and then
generate a synthetic dataset to augment the training set. After that, they train a
CNN on the real training set and a CNN on the augmented dataset for classification.
As a result, they achieve a 7.1% increase in sensitivity (from 78.6% to 85.7%) and a
4.0% increase in specificity (from 88.4% to 92.4%) thanks to the synthetic images.

4.2 Related work on UniToPatho

The UniToPatho dataset has been studied in three main areas ranging from Classi-
fication, to Segmentation and Generation.

Classification

Barbano et al. [3] propose different solutions to the classification task on UniToPatho,
tackling it at different sizes. They use an ensamble of multiple cascading ResNet-18
[19] models trained on both the Ã = 800 and Ã = 7000 crops. The model has an initial
ResNet-18 that discriminates between HP and non-HP class at Ã = 800. After this
discrimination, the non-HP classes are then discriminated at Ã = 7000 with another
ResNet-18 which classifies between NORM, TA and TVA class. Finally, for the TA
and TVA predictions, another ResNet-18 is used at Ã = 800 which classifies between
LG and HG dysplasia. Overall, the final model achieves a balanced accuracy of
67.0% over the 6 classes.

The most clinically important task for pathologists is the differentiation between
the two grades of dysplasia. By focusing only on this task, the authors achieve a
balanced accuracy of 80.5% after training a ResNet-18 model on the 1812px crops.
This leaves the challenge for accurate automatic grade classification still open.

Segmentation

In another work, Di Luccio et al.[9] propose a segmentation model for nuclei of Uni-
ToPatho images. The segmentation consist in the extraction and classification of all
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the nuclei in a given image. Since the UniToPatho dataset does not have segmen-
tation masks, Di Luccio et al. apply transfer learning starting from the PanNuke
dataset. They train a UNet++[62] network on top of annotated colon scans of the
PanNuke dataset and achieve great results, with an IoU (Intersection over Union)
score of 0.84. An example of the segmentation is shown in Figure 4.1.

Figure 4.1: On the left, an UniToPatho image. On the right, its segmentation [9].
Blue: Neoplastic cells. Green: Inflammatory. Red: Connective/Soft tissue cells.
Cyan: Dead Cells. Magenta: Epithelial.

Generation

In a subsequent work, Rubinetti et al.[49] used the segmentation masks extracted in
[9] to build a generative model. Their goal was to build a model able to transform
segmentation masks into realistic histological images with the aim to use prior med-
ical knowledge to generate new samples for the UniToPatho dataset. They trained
a standard Pix2Pix[26] model on both PanNuke and UniToPatho and succeeded
in their generative task at a 256px crop size. However, when scaling their model
to higher resolutions, such as the most significant 1812px resolution[3], the quality
degrades significantly.
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Figure 4.2: Prior generation work on UniToPatho at low resolution[49]. First row:
segmentation masks. Middle row: real images. Right row: reconstructed images.

Figure 4.3: Prior generation work on UniToPatho at high resolution[49]. Left image:
segmentation masks. Middle image: real images. Right image: reconstructed images.
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Chapter 5

Generation

GANs have recently shown astonishing results in the photo-synthesis field, gener-
ating high-quality photo-realistic images of faces, animals and even 3D scenes. We
experiment with the use of such models in the medical computer-vision field. In
our case, we use a GAN model applied to the UniToPatho dataset in an attempt to
generate new samples with the goal to increase the accuracy of classification models.
We only focus on the dysplasia grade label of the dataset, since the distinguishment
between low-grade and high-grade dysplasia is the most influential target under clin-
ical perspective [17, 18, 38, 50]. In this chapter, we provide a description of the
models and methods used for training the GAN, along with some initial results for
the quality of the generations.

5.1 Method

For all of the following GAN models we use a StyleGAN2[29] architecture, with 8
mapping layers, and a size of 512 for both the Z and W latent spaces. We use a
non-saturating adversarial loss, path-length regularization and R1 gradient penalty.
The overall objectives are:

Lg = −Ez∼Pz
[log(d(g(z)))] + µplEw∼Pw,y∼N (0,I)(∥J

T
wy∥ − a)2 (5.1)

Ld = −Ex∼Px
[log(d(x))]− Ez∼Pz

[log(1− d(g(z)))] + µR1
Ex∼Px

[∥∇xd(x)∥
2] (5.2)

As described in section 2.8, this adversarial loss is the alternative loss to the orig-
inal min-max loss proposed by Goodfellow et al. [15] that avoids the saturation of
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the Generator network. The regularization term in Equation 5.1 is the path-length
regularization that encourages the Generator to avoid drastic changes in the neigh-
bourhood of sampled latent vectors mapped into W space. The regularization term
in Equation 5.2 is the R1 gradient penalty, which forces the discriminator to avoid
producing gradients without suffering from the adversarial loss when the generator
reaches the true real data distribution. The structure of the two losses is the one
proposed in [29].

Since our dataset is quite small, we apply an augmentation pipeline to the images
shown to the discriminator, as proposed by Karras et al. [30]. We include horizontal
and vertical flipping with p = 0.5 and random 90-degree rotation with p = 0.5.
Additionally we use random saturation, contrast and brightness manipulation with
p = 0.5 and a random intensity in the range of ±0.2.

Initially, we train a conditional GAN on dysplasia grade with 2-sized one-hot
encoding of the label. The purpose of this model is to have a single GAN that learns
the distributions of both the high-grade and low-grade samples. However, since the
two classes are very similar, we hypothesise that given the strong imbalance in the
dataset, the conditional GAN trained on both classes could eventually lean only
towards the majority class (low-grade). For this reason, we also train two separate
unconditional models, one for the low-grade class and one for the high-grade class.
This way, the two networks never see the other class and cannot mix their features.
We train the three models on both 512px and 2048px and compare them through a
FID50k score and an initial experiment with experts.

5.2 Setup

For the training we use the Adam[33] optimizer with ´0 = 0, ´1 = 0.99, ϵ = 1e− 8,
learning rate of 0.0025. For the R1 regularizer we use a weight of 6.5 and for the
path-length term we use 2.0 as weight. These hyperparameters were used by Karras
et al. [31] and are usually suitable for a lot of different datasets and GAN settings.

Data preprocessing

We extract two versions from the UniToPatho dataset that we later use for GANs:
a cropped version at 512px resolution and a resized version at 2048px resolution:

• 512px resolution: we extract 16 partially overlapping 512px resolution crops
out of each image. By doing so we obtain 139.2k images starting from 8.6
images. We notice that some of the crop images contain very low information,
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to such an extent that some are completely white. We manually label some
of these low-content crops and fit a simple SVM model on the outputs of a
pretrained ResNet on ImageNet to filter out the dataset. As a result, we end
up with 79.3k images, of which 7.5k high-grade and 39.9k low-grade samples
are used for training;

• 2048px resolution: using power-of-two resolutions when training GANs allows
to easily scale and transfer the weights of lower resolution models to higher
resolution ones, thus we resize the 1812px UniToPatho images to 2048px with
a bilinear interpolation.

Training on 512px resolution

Karras et al. [29] released a pretrained GAN on BreCaHAD[1], a histological dataset
for breast cancer analysis. In a first experiment, we extend their model and fine-tune
it for UniToPatho. The BreCaHAD model is trained on 512px resolution images,
so we use the 512px version of the UniToPatho dataset. We train the GAN with a
batch size of 32 until the FID50k metric starts diverging, resulting in a total of 4.1M
examples shown to the discriminator after 5 days and 19 hours on a single Nvidia
A40 GPU.

Training on 2048px resolution

State of the art GANs are usually trained up to 1024px resolutions, but since the
dysplasia-grade is better classified at higher resolutions [3] we chose to train the GAN
model on the full-sized 2048px resolution images.

Similarly to the previous version, we train with a batch size of 32 for 8 days and
5 hours on a single GPU, for a total of 940k images shown to the Discriminator.

5.3 Interpolation

As an initial evaluation of our model, we generate some examples to check their
visual quality (Figure 5.1). Additionally, we explore the latent space through the
common technique of interpolation between vectors. If we pick two random latent
vectors following the initial normal distribution in Z, the generator creates two
mostly different images. However, if we interpolate between these two latent vectors
and pick some points in the interpolation path, we can visualize the samples in-
between the two generations. This is also a frequent approach used to determine
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whether the generator is actually generating new images or it has just memorized
the samples. Sharp transformations in the interpolated generations are usually a
sign of overfitting. In our case, we take evenly-spaced steps in each of the values of
the latent vectors from one to the other and, as visualized in Figure 5.2, our model
shows natural transformations.

Figure 5.1: Comparison between real (left two columns) and generated (right two
columns) images at 512px resolution.

Learned evolution of tissues visualized through interpolation

Doing interpolations in the latent space Z does not allow to interpolate between
different classes, since the classes are represented as a discrete one-hot encoding.
However, our GAN model mixes both the latent space Z and the label into a con-
tinuous latent space W , thus allowing for interpolation between different classes. If
we use the same latent vector Z and map it with two different classes into W , we
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can visualize how the generator distinguishes the two labels over the same encod-
ing. Furthermore, we can interpolate between the two corresponding vectors in W
and visualize how a low-graded tissue evolves into a high-grade tissue with the same
characteristics encoded by the same latent vector Z, as shown in Figure 5.3.

5.4 Experts’ evaluation

To additionally check whether or not the GAN is generating realistic images, we run
two experiments with expert pathologists from the Department of Medicine of the
University of Turin.

Initially, we run a classification experiment by sampling 10 low-grade images
and 10 high-grade images at 2048px resolution, and ask the experts to annotate
them. The resulting accuracy is 85%, where 20% of the high-grade examples got
misclassified as low-grade ones, and 10% of the low-grade examples got misclassified
as high-grade ones.

As a second test, we run a fake/real experiment. We randomly pick 10 real

Figure 5.2: Visualization of the interpolation between random latent Z vectors of
the same class. In each row, the first and last images are generated from randomly
sampled vectors. The images in-between are the visualizations of each sequential
step taken from the first latent vector towards the last one (2048px model).
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Figure 5.3: Visualization of the interpolation between low-grade latent vectors and
their corresponding high-grade latent vector. All examples on each row start from
the same latent vector in Z. On the first column the Z vectors are mapped into W
with a low-grade label, whereas the last column corresponds to the Z vectors mapped
into W with a high-grade label. The images in-between are the visualization of the
interpolations between the two W-space latent vectors in each row. Under each
image we show the classification prediction of our ResNet18 model trained on real
examples (512px model).

examples and randomly synthesize 10 fake examples. We run the experiment for
both 512px and 2048px resolutions and ask the experts to check which examples are
generated and which ones are real. The resulting accuracy for the 512px resolution
images is as low as 52.6%, which demonstrates that the quality of the generated
samples is very high, to such an extent that they are indistinguishable from real
ones, even by experts. Regarding the 2048px resolution, the pathologists achieve
65.7% accuracy, which shows that on higher resolutions the quality slightly decreases.
Experts also noted that the 2048px fake images are easier to spot because there’s
more space for unrealistic patterns.
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Experiment Resolution Accuracy

Synthetic labeling 2048px 85.0%
Fake vs Real 2048px 65.7%
Fake vs Real 512px 52.6%

Table 5.1: Results of the evaluation by experts

5.5 FID Results and discussion

We evaluate all the GAN models with a FID50k metric. As shown in Table 5.2,
lower resolution models perform better than higher resolutions ones, with a mini-
mum FID50k of 3.6, which further confirms the initial observations by experts in
the previous section. The reason for this is that the images at 2048px resolution,
aside from having higher size, contain additional global information about the pat-
tern of the tissue which is absent from the low-grade images. Additionally, for the
2048px resolution there are only 5k examples compared to the 40k examples at 512px
resolution.

Conditioned models also perform slightly better than unconditioned ones, which
is most probably caused by the higher amount of examples when considering both
classes together. Furthermore, we notice that HG-only models achieve a very high
FID50k compared to the LG ones. In fact, this is caused by the strong imbalance
in the dataset, which has a much lower amount of examples for the high-grade class
compared to the number of low-grade samples.

Resolution Dysplasia Grade FID50k

512px both (conditioned) 3.6
512px low grade 5.4
512px high grade 7.9
2048px both (conditioned) 9.1
2048px low grade 8.6
2048px high grade 24.2

Table 5.2: Comparison of the FID50k on different resolutions.
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Chapter 6

Classification with

GAN-augmentation

As mentioned earlier, our primary goal is to exploit the GAN for augmentation of the
UniToPatho training set. We only focus on the 2048px images, because, as Barbano
et al. [3] show, the dysplasia grade of the UniToPatho dataset is best detected at
higher resolutions.

6.1 Method

For the classification task we use ResNet-18 models pretrained on ImageNet1k [8].
We replace the last fully-connected layer with a new fully-connected layer with 2 out-
puts, one for the probability of low-grade dysplasia and the other for the probability
of high-grade dysplasia. The objective of the training is thus a cross-entropy.

First, we train a ResNet-18 model only on real data to determine the baseline
accuracy limit of the training set. After that, we use our GAN to generate a dataset
of the same size of the real training set for augmentation purposes. To evaluate
the quality of this synthetic dataset, we first compute the Classification Accuracy
Score(CAS) [44], which consist in training a separate classifier on top of only gen-
erated samples and evaluate its accuracy against a real test set. We then proceed
with the augmentation method by training ResNet-18 models on the training data
augmented with the synthetic dataset. We experiment with two proportions of aug-
mentation:

• 1.5x augmentation: we add 50% samples per class of the training set, which is
equivalent to 1499 low-grade samples and 572 high-grade samples;
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• 2x augmentation: we add 100% samples per class, by in fact doubling the
dataset size.

Finally, we follow the idea of using GANs as both trained feature extractors [43, 37]
and for anomaly detection [10]. We take the Discriminator model trained only on
low-grade 2048px images and extract the features of the last two convolutional blocks
for all the real training set and test set. We flatten and concatenate these results
and fit an SVM model. We apply a grid search on the training set to determine the
most suitable kernel type, regularization parameter strength, and polynomial degree
in case of polynomial kernel. We then evaluate the accuracy of the SVM on the test
set features.

6.2 Setup

For all the ResNet-18 models trained for classification we always keep the same
training setting in order to evaluate the impact of the synthetic samples. We use the
Adam [33] optimizer with a batch size of 256, a learning rate of 0.01 and a weight
decay of 1e−5. We also apply an augmentation pipeline with random horizontal
and vertical flipping (p = 0.5), random rotation in the range of [−90◦,+90◦] with
reflection padding (p = 0.5) and random color jittering of brightness, contrast, hue
and saturation in the range of [0.8, 1.2]. Additionally, we normalize the colors of the
images to the mean and standard deviation of the images of ImageNet. Furthermore,
as suggested by Barbano et al. [3], we balance the training set by randomly replicating
the high-grade samples and randomly reducing the number of low-grade samples
such that the final training set size is the same as the initial one but the number of
examples per class is the same.

6.3 Results and discussion

The final combined classification results are shown in Table 6.1.

Baseline results. For the baseline ResNet-18, averaging from 3 runs we achieve a
balanced accuracy of 79.1%, a sensitivity of 0.732 and a specificity of 0.852.

Synthetic-only results. As an initial check, we evaluate the trained baseline
model on the synthetic dataset to classify the generated samples. As a result we
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Experiment Balanced Accuracy Sensitivity Specificity

Baseline Resnet18 79.2% ± 0.4% 0.732 ± 0.048 0.852 ± 0.051
Synthetic-only 78.2% ± 0.9% 0.686 ± 0.032 0.877 ± 0.020

Augmented with 50% 79.8% ± 1.0% 0.696 ± 0.017 0.899 ± 0.012
Augmented with 100% 78.7% ± 0.6% 0.722 ± 0.014 0.853 ± 0.011

Unsupervised LG GAN+SVM 77.2% 0.621 0.919

Table 6.1: Training results on the test set averaged out of 3 runs.

obtain a balanced accuracy of 84.1%, which is almost the exact same accuracy eval-
uated in the experiment with experts, as described in section 5.4.

Additionally, after training a new ResNet18 only on the generated samples, we
achieve a balanced accuracy of 78.2% on the test set, averaged from 3 different runs.
The resulting sensitivity decreases to 0.686, compared to the baseline model, whereas
the specificity increases to 0.877.

Augmentation results. In the first version of 50% augmentation, the resulting
balanced accuracy slightly improves over our baseline model with a 79.8% score,
averaged from 3 different runs. However, similarly to the synthetic-only conclusion,
there is a loss in sensitivity and a gain in specificity, with 0.705 and 0.927 respectively.

On the other hand, for the 100% augmentation we achieve a balanced accuracy
of 78.7%, a sensitivity of 0.722, and a specificity of 0.853.

GAN Discriminator results. After applying a grid-search on the hyperparame-
ters of the SVM (kernel type, regularization parameter strength, polynomial degree
in case of polynomial kernel) on the training set, with a cross-validation K-fold of 5
we achieve a 77.2% balanced accuracy on the test set. The result is quite impressive:
without ever showing high-grade examples to the GAN, the SVM almost approaches
the accuracy of the baseline ResNet model.

Discussion

As shown in the previous sections, the GAN is capable of learning the characteristics
of the two classes and generates samples that are very similar to the real data. The
results of the SVM experiment show that the discriminator, after training only on
low-grade samples, can be exploited as a feature extractor for anomaly detection and
classification on previously unseen classes.
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Furthermore, the results of the CAS experiment show that the generated samples
are almost as representative as the real ones. This demonstrates that, at the price
of a small accuracy loss, GANs can be used to anonymize real data by generating
almost-equivalent synthetic datasets.

Finally, when using synthetic data for augmentation, the experiments show that it
can achieve a slight (but not statistically significant) increase in the average accuracy.
However, in all the experiments we noticed a decrease in sensitivity and an increase
in specificity. This suggests that the GAN still suffers from the imbalance of the
dataset and leans more towards the majority class (low-grade).
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Chapter 7

Image-to-image Translation

Sampling random images for augmentation only from random latent vectors shows
very promising results, but does not allow to fully solve the classification tasks on
the UniToPatho dataset. This is mostly due to the fact that the high-grade dysplasia
class has very few examples compared to the low-grade one, thus the GAN cannot
learn the true distribution for HG samples. For this reason, we now focus on a differ-
ent approach for the generation task. Instead of sampling images just from random
noise, we encode high-level image features such as segmentation masks of nuclei into
an intermediate latent space and use this information to guide the synthesis process.
This enables to manually craft realistic and meaningful samples for augmentation
by exploiting prior expert medical knowledge and focusing the generation on the
minority class.

7.1 Method

The StyleGAN[29] architecture that we used in the previous experiments showed
high-quality results. For this reason, we extend it to an image-to-image setting, as
similarly done by Richardson et al. [46].

Initial idea

In a first experiment, we attempt to extend the StyleGAN model with an additional
variational autoencoder setting[34]. Since the input of the Generator network of the
StyleGAN follows a normal distribution, we introduce an encoder network that maps
segmentation masks into an intermediate space describing the mean and variance of
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Figure 7.1: Result of the image-to-image model with variational encoding. The
resulting images are of high-quality, but strongly unrelated from the segmentation
masks.

the normal distribution. These parameters are then used to model a normal distri-
bution and sample random vectors from it. We train the full network similarly to the
previous experiments, with an additional loss for the Kullback–Leibler divergence[45]
and reconstruction loss. After experimenting with different hyperparameters for the
losses and encoder structure, we notice that all the generations are of arguably high
quality, but strongly unrelated from the segmentation masks. An example is shown
in Figure 7.1.

We hypothesise that this outcome is caused by the randomness of the reparametriza-
tion which eventually causes completely different masks to be mapped into very
similar latent vectors, thus causing an instability in the training.

Final architecture

Instead of using a variational encoder, we experiment with a different approach that
has less generative power, but allows the high-level details of the masks to flow prop-
erly into the generator network. We introduce a new Encoder that allows to inject
the segmentation masks of nuclei directly into the synthesis network. This network
is composed of ResNet[19] blocks and additional skip connections that, similarly to
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a U-Net[47], concatenate the output of each block into the corresponding resolution
blocks in the synthesis network. Before the concatenation we use an additional in-
stance normalization layer [55], and we keep the same mapping network and learned
synthesis input of the StyleGAN architecture. A high-level design of the generator
network is summarized in Figure 7.2.
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Figure 7.2: Architecture of the extended generator. The Mapping and Synthesis
networks follow the StyleGAN2[29] architecture. The Encoder network uses skip
connections similar to the U-Net[47] architecture.
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For the Discriminator network we use the same architecture of the previous ex-
periments with additional input channels for the segmentation masks. This allows
the Discriminator to also learn a correct relationship between segmentation masks
and real images, as done in [26].

The total number of parameters is 94.1M for the 512px model and 94.5M for the
2048px model.

We use the same adversarial loss and regularization terms used for the GANs
in the previous experiment. Furthermore, we experiment with an additional L1
reconstruction loss, which usually works better with image-to-image translation[26].
The final objective functions are:

Lg = −Ez,s[log(d(g(z, s)))] + µplEw,y∼N (0,I)(∥J
T
wy∥ − a)2 + ¼Ez,s,x[∥x− g(z, s)∥1],

Ld = −Ex,s[log(d(x, s))]− Ez,s[log(1− d(g(z, s)))] + µR1
Ex,s[∥∇x,sd(x, s)∥

2],

where s refers to segmentations and ¼ is a hyperparameter referring to the weight of
the reconstruction term.

7.2 Setup

We train all the models on a single Nvidia A40 GPU with the Adam [33] optimizer, a
learning rate of 0.0025, a batch size of 32 and an augmentation pipeline consisting of
random rotation, random flipping, and random jittering of hue, contrast, saturation
and brightness.

For the 512px models, we train for an average of 14 days, resulting in 74M
examples shown to the discriminator. We then train the higher-resolution model
by initially copying the weights of the smaller one on the shared components of the
networks. We train the 2048px models for an average of 8 days with a total of 1.1M
examples shown to the discriminator.

7.3 Results and discussion

As shown in Figure 7.3, our model successfully produces high-quality and high-
resolution reconstructions. We experiment with different weights for the reconstruc-
tion loss and, contrary to other works [26], this loss term does not provide any
advantage in the synthesis. In fact, visual quality improves for lower weights of the
term. In addition, the lowest FID50k result that we achieve is 3.46, without any
reconstruction loss. We argue that this behaviour is caused by the fact that our syn-
thesis is also guided by random latent vectors defining the style that are independent
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from the segmentation masks. This leads the reconstruction loss to try associating
the same image to multiple style vectors, which creates instability in the training
of the Generator. Furthermore, the removal of the reconstruction loss demonstrates
that the Discriminator network is capable of autonomously learning the relationship
between segmentations and images solely from the adversarial loss.

Reconstruction loss weight FID50k

¼ = 0.0 3.46

¼ = 2.0 5.34
¼ = 10.0 5.62

Table 7.1: Comparison of the FID50k with different reconstruction loss weight on
the 512px resolution images.

Figure 7.3: Images generated by our model. The first column contains the real
images. The second column contains the segmentation masks. The rest of the
columns are generated by the GAN. Each of the generations columns represents
a randomly sampled Z vector, which enforces the same style across different input
masks.

Compared to prior work on UniToPatho [9], our model drastically improves the
visual quality, especially on higher resolutions, as shown in Figure 7.4. Additionally,
the FID50k metric also determines significantly lower distances for our model, as
described in Table 7.2. Furthermore, compared to the prior work which learns a
deterministic mapping between segmentation masks and images, our model has more
generative power thanks to the additional latent space that can be use to guide the
style of the generation. As shown in Figure 7.3, we can randomly draw input vectors
from the Z latent space and apply them to the same segmentation masks. By
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doing so, the generator keeps the positioning of nuclei enforced by the segmentation
masks intact in the generation, while still producing different realistic variations of
the tissues. On the other hand, when we apply the same latent vector to different
segmentation masks, the generator keeps the same style in the generations. This
demonstrates that our GAN learns to separate the input space of segmentation masks
from the overall style space.

Model Train 512px Test 512px Train 2048px Test 2048px

Pix2Pix-based [49] 37.6 36.2 82.1 88.1
Ours 3.46 4.32 5.33 6.12

Table 7.2: Comparison of the FID metric between our model and prior work [49].

Figure 7.4: Comparison with prior work [49] at 512px resolution (left) and 2048px
resolution (right). Columns in order: ground truth, ours, prior work.
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Conclusion

We explored various applications of GANs on the UniToPatho dataset. In a first ex-
periment we implemented and trained GANs on different resolutions with the goal of
synthetizing new images for aumgmentation. Preliminary analysis on this approach
showed interesting results, such as the learned tissue evolution between dysplasia
grade, and the difficulty of experts to distinguish real eaxmples for generated ones.
Subsequently, we trained different ResNet models on both the real dataset and mul-
tiple synthetic versions, achieving small (but not statistically significant) improve-
ments in average accuracy. We showed that our GANs also suffer from the strong
imbalance in the data, thus not enabling us to fully solve the classification task. For
this reason, we studied a different approach for the generation that allows to guide
the synthesis process with high level tissue features, such as segmentation masks of
nuclei. For this purpose, we implemented a new generative model based on our initial
GAN and improved the image quality and scalability of prior similar attempts. We
succeeded in the training of this model and will further explore the augmentation
path by exploiting expert medical knowledge for the synthesis of more meaningful
samples.
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Appendix A

More Generations

Figure A.1: Image-to-image generations at 512px resolution. Columns in order:
segmented, generated, real.
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Figure A.2: Generations at 512px resolution
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Figure A.3: Generations at 2048px resolution
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Figure A.4: Image-to-image generations at 2048px resolution. Columns in order:
segmented, generated, real.
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Figure A.5: The UI of our tool for image synthesis. Available at https://

desi-ivanov.github.io/histopatho-drawer
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