
UNIVERSITÀ DEGLI STUDI DI TORINO

DIPARTIMENTO DI INFORMATICA

SCUOLA DI SCIENZE DELLA NATURA

Laurea Triennale in Informatica

Formalization of Regular Languages in Agda

Relatore: Prof. Luca Padovani Candidato: Desislav Nikolaev Ivanov

ANNO ACCADEMICO
2019 / 2020

Abstract
We use the proof assistant Agda to prove properties on Regular Expressions and Finite
State Automata. Initially, we prove the correctness of two ways to decide whether or not
a string belongs to the language of a regular expression. The first one uses Brzozowski’s
Derivatives and the second one transforms regular expressions into Non-deterministic Fi-
nite State Automata. Finally, we show the pumping lemma for regular languages and
conclude with the non-regularity of an example language.

Contents

1 Introduction to Agda 1
1.1 Inductive datatypes . 1
1.2 Functions . 2
1.3 Induction . 2
1.4 Dependent datatypes . 3

1.4.1 Propositions as types . 4
1.4.2 Vec, Fin and Subset properties 8

2 Regular Expressions 10
2.1 Definition . 10
2.2 Implementation . 10
2.3 Algebraic laws for regular expressions 14
2.4 Decidable membership using derivatives 16

2.4.1 Nullable predicate . 16
2.4.2 Derivative . 18
2.4.3 Decidable membership . 20

3 Finite State Automata 22
3.1 Deterministic Finite Automata . 22

3.1.1 Extended transition function . 25
3.1.2 Language of a DFA . 25

3.2 Non-deterministic Finite Automata . 26
3.2.1 Definition . 27
3.2.2 Language . 28
3.2.3 Union . 30
3.2.4 Concatenation . 34
3.2.5 Star . 37

3.3 Deciding RegExp membership using NFAs 38

3.3.1 NFAs for L(∅), L({ε}), L({c}) 38
3.3.2 Regular expressions to NFAs . 39
3.3.3 Decidable . 42

3.4 Pumping Lemma and a Non-regular Langauge 43
3.4.1 Path . 43
3.4.2 Power . 44
3.4.3 Pigeonhole principle . 45
3.4.4 Returning to same state . 46
3.4.5 Pumping Lemma . 47
3.4.6 A Non-regular language . 50

4 Conclusion 53

Chapter 1

Introduction to Agda

Agda is a dependently typed functional programming language. Its typesystem is so pow-
erful that it can be used as a proof assistant. Checking if a function is correct can be done
by successfully compiling the file containing it.

1.1 Inductive datatypes
Datatypes can be defined inductively. For example, the type for natural numbers has a base
case zero and an inductive case for the successor. In Agda, these two cases are defined as
constructors:

data N : Set where
zero : N
suc : N → N

zero is the constructor for the base case and suc receives a number as paramether and
constructs its successor. For example, one is defined as suc zero, two is defined as suc
(suc zero) and three is defined as suc (suc (suc zero)).
Writing big numbers with this notation can be tedious, so Agda provides a shortcut for
built-in types such as numbers:

{-# BUILTIN NATURAL N #-}

y : N
y = 123

1

1.2 Functions
We can define the addition operation recursively:

+ : N → N → N
zero + n = n
(suc m) + n = suc (m + n)

Here + is the name of the function. It receives two natural numbers as parameters and
produces a natural number. Underscores are used to define infix notation and indicate
where the arguments should be placed. In this case, the sum of two numbers n, m, can be
written as n + m, which is equivalent to not using infix notation at all (+ n m).
The definition uses pattern matching to match all possible constructors for the first argu-
ment. It has a base case for zero and an inductive case for the successor. In the first case,
adding zero to a number n returns simply n. In the second case, adding suc m to n
returns the successor of the sum of the two smaller ones suc (m + n).
When defining functions, Agda performs termination checks. A function terminates cor-
rectly when the recursion is done on smaller arguments.

1.3 Induction
Inductive datatypes are somehow related to the (structural) induction principle. Proving a
property for an inductive datatype can be done by showing that the property holds for the
base cases and then showing it holds for the inductive cases, eventually using the inductive
hypothesis.
In Agda, the induction hypothesis is generated by recursion.
Here is an example which proves the right identity of addition:

+-identityr : ∀ (m : N) → m + zero ≡ m
+-identityr zero = refl
+-identityr (suc m) with +-identityr m
... | IH = cong suc IH

For the base case we have m = zero and so the goal requires a proof for zero + zero
≡ zero. By definition of addition, zero + zero = zero and we conclude zero
≡ zero. For the inductive case, we need to prove suc (m + zero) ≡ suc m. The
with command evaluates the induction hypothesis using recursion on m. The value of IH
is m + zero ≡ m. We conclude the case using the congruence property of equality,
which states that if two arguments are equal, then equality is preserved after applying the
same function to both:

2

cong : ∀{A C : Set} {a : A} {b : A}
(f : A → C)
→ a ≡ b
→ f a ≡ f b

cong f refl = refl

The proof for identity can be simplified with the rewrite command. It takes an equality
argument like a ≡ b and it internally instructs Agda to rewrite b where it finds a. The
rewriting step is done only once, in order to avoid infinitely growing rewrites:

+-identityr' : ∀ (m : N) → m + zero ≡ m
+-identityr' zero = refl
+-identityr' (suc m) with +-identityr m
... | IH rewrite IH = refl

The inductive case requires a proof for suc (m + zero) ≡ suc m.
Using the rewrite command on the induction hypothesis (same as the previous one:
m + zero ≡ m), Agda internally updates the left side of the goal from suc (m +
zero) to suc (m). The required proof becomes suc m ≡ suc m which is immedi-
ate.
For these proofs, we actually used another datatype: the equality datatype. It is a depen-
dent datatype, meaning that it depends on a concrete value:

data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x

1.4 Dependent datatypes
Dependent datatypes are types depending on one or more values. For example, the type
for finite-size vectors can be defined as a dependent type:

data Vec (A : Set) : N → Set where
[] : Vec A zero
:: : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)

It depends on a natural number, the size of the vector. The [] constructor builds a vector
of size zero. The :: constructor takes two parameters, an element of type A and a vector
of size n, and builds a vector of size 1 + n.
Here is an example of a vector containing two natural numbers:

x : Vec N 2
x = 1 :: 3 :: []

3

We can also define the type for finite numbers Fin n:

data Fin : N → Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} (i : Fin n) → Fin (suc n)

This means that a value of type Fin n can only be a number between zero and n - 1.
For example, only the numbers 0 and 1 can be of type Fin 2:

a : Fin 2
a = zero

b : Fin 2
b = suc zero

Saying that 2 is of type Fin 2 is wrong and Agda rejects it:

c : Fin 2
c = suc (suc zero)
-- Error :
-- (suc _n_34) != zero of type N
-- when checking that the expression zero has type Fin 0

Using Fin and Vec types, we can define a total function for accessing a value at an
index in a vector:

lookup : ∀ {n} → Vec A n → Fin n → A
lookup (x :: xs) zero = x
lookup (x :: xs) (suc i) = lookup xs i

Since lookup is total, there cannot be any run-time error while accessing a value at a given
index (e.g. IndexOutOfBoundsException in Java). If we were to write x = lookup (1
:: []) (suc zero), the type checker would raise an error as the vector is of type Vec
N 1, whereas the index is of type Fin 2.

1.4.1 Propositions as types
By taking advantage of dependent datatypes, logical propositions can be defined as types.
For example, the following type can be used to constructively build a proposition stating
that a number is Even:

4

data Even : N → Set where
zero : Even zero
next : ∀{n : N}

→ Even n
→ Even (suc (suc n))

We say that 0 is even and adding 2 to an even number constructs another even number.
We can define a similar proposition for Odd numbers where the base case is 1 instead of
0:

data Odd : N → Set where
one : Odd (suc zero)
next : ∀{n : N}

→ Odd n
→ Odd (suc (suc n))

Using these two propositions, we can prove that for an arbitrary number n, Even n im-
plies Odd (suc n):

even⇒suc-odd : ∀{x : N}
→ Even x

→ Odd (suc x)

even⇒suc-odd zero = one
even⇒suc-odd (next a) = next (even⇒suc-odd a)

Here we used the function type as an implication.
We can also say that Odd n implies Even (suc n):

odd⇒suc-even : ∀{x : N} → Odd x → Even (suc x)
odd⇒suc-even one = next zero
odd⇒suc-even (next a) = next (odd⇒suc-even a)

We can also define connectives as datatypes. For example, conjunction can be defined as
the product type (also interpretable as a Pair) and disjunction can be defined as the sum
type (also referred to as the Either type):

data _×_ (A B : Set) : Set where
〈_,_〉 : A → B → A × B

data _]_ (A B : Set) : Set where
inj1 : A → A] B
inj2 : B → A] B

5

For example, we can prove that every natural number is even or odd:

N-Even-or-Odd : ∀(x : N) → Even x] Odd x
N-Even-or-Odd zero = inj1 zero
N-Even-or-Odd (suc x) with N-Even-or-Odd x
... | inj1 ev = inj2 (even⇒suc-odd ev)
... | inj2 od = inj1 (odd⇒suc-even od)

Regarding true and false, we can still be constructive. The type for truth is the unit
type, with a single constructor tt. On the other hand, false is the empty type, without any
constructor:

data > : Set where
tt : >

data ⊥ : Set where
-- no constructors

False implies anything. In fact, Agda automatically closes the case as no constructor
pattern that can be matched:

⊥-elim : ∀ {A : Set}
→ ⊥
→ A

⊥-elim ()

Negation is a function which takes a type A and creates a function which takes an argument
of the type A and produces the empty type:

¬_ : Set → Set
¬ A = A → ⊥

Given a proposition ¬ A, if we provide an argument of type A, we are able to construct the
empty type, which is absurd as empty has no constructors. Therefore, we could conclude
anything using⊥-elim. For example, we can show that if a number is even, then it is not
odd. As a consequence, we can conclude that no natural number is both even and odd:

even⇒¬odd : ∀{x : N} → Even x → ¬ Odd x
even⇒¬odd zero = λ ()
even⇒¬odd (next ev) (next od) = ⊥-elim((even⇒¬odd ev) od)

N-not-both-even-odd : ∀{x : N} → ¬ (Even x × Odd x)
N-not-both-even-odd 〈 ev , od 〉 = ⊥-elim (even⇒¬odd ev od)

6

The “if and only if” proposition is a record with two fields, each representing one
direction of the implications:

record _⇔_ (A B : Set) : Set where
field

to : A → B
from : B → A

Isomorphism between types is defined similarly to “if and only if”, with two additional
fields which provide the proofs about the identity of compositions:

record _'_ (A B : Set) : Set where
field

to : A → B
from : B → A
from◦to : ∀ (x : A) → from (to x) ≡ x
to◦from : ∀ (y : B) → to (from y) ≡ y

Propositional types provide constructive evidence why propositions hold, but we can
also define propositions using the Bool type and define connectives as functions:

data Bool : Set where
true : Bool
false : Bool

∧ : Bool → Bool → Bool
true ∧ true = true
_ ∧ _ = false

∨ : Bool → Bool → Bool
true ∨ _ = true
_ ∨ true = true
false ∨ false = false

not : Bool → Bool
not true = false
not false = true

The Bool type can be mapped to the relative > and ⊥ propositions:

T : Bool → Set
T true = >
T false = ⊥

7

A function that produces boolean values can include both true and false cases, but it pro-
vides less information than the propositional types approach. On the other hand, the latter
must be defined manually by providing a construction (in fact, we cannot prove some laws
like the “excluded middle law” ∀{A : Set} → A] ¬ A).
Both benefits can be included in one type, the decidable type. It combines the functional
aspect where true and false can be decided, and it also concretely provides constructive
proofs:

data Dec (A : Set) : Set where
yes : A → Dec A
no : ¬ A → Dec A

For example, for any natural number n, we can decide whether the proposition Even n
holds or not:

Even? : ∀(x : N) → Dec (Even x)
Even? x with N-Even-or-Odd x
... | inj1 xEven = yes xEven
... | inj2 xOdd = no (λ xEven → N-not-both-even-odd 〈 xEven , xOdd 〉)

We use the property N-Even-or-Odd which states that a number x is even or odd
(the case where both propositions hold is not excluded).
If x is even, we conclude with yes by providing the same proof determined by the lemma.
Otherwise, when x is odd, we conclude that x is not even. In fact, we show that assuming x
is also even allows us to construct the empty type by applying N-not-both-even-odd.

1.4.2 Vec, Fin and Subset properties
In this section, we define the Subset type which we use later. A Subset of size n is a
vector of size n containing Bool values.

Subset : N → Set
Subset n = Vec Bool n

An element i : Fin n is in the subset if the value at index i in the vector is true.

∈ : ∀{n} → (p : Fin n) → (ss : Subset n) → Set
p ∈ ss = T(lookup ss p)

6∈ : ∀{n} → (p : Fin n) → (ss : Subset n) → Set
p 6∈ ss = ¬ T(lookup ss p)

8

We can decide whether or not an element belongs to a subset:

∈? : ∀{n} → (p : Fin n) → (ss : Subset n) → Dec (p ∈ ss)
zero ∈? (false :: z) = no (λ z → z)
zero ∈? (true :: z) = yes tt
suc p ∈? (x :: z) = p ∈? z

A Fin n value can be transformed into a natural number:

toN : ∀ {n} → Fin n → N
toN zero = 0
toN (suc i) = suc (toN i)

A Fin m value can be raised arbitrarily into Fin (n + m):

raise : ∀ {m} n → Fin m → Fin (n N.+ m)
raise zero i = i
raise (suc n) i = suc (raise n i)

A Fin m value can also be injected into Fin (m + n):

inject+ : ∀ {m} n → Fin m → Fin (m N.+ n)
inject+ n zero = zero
inject+ n (suc i) = suc (inject+ n i)

Given a Fin (n + m) value, we can split the sum generating either Fin n or Fin m:

splitAt : ∀ m {n} → Fin (m + n) → Fin m] Fin n
splitAt zero i = inj2 i
splitAt (suc m) fzero = inj1 fzero
splitAt (suc m) (fsuc i) = Data.Sum.map fsuc (λ x → x) (splitAt m i)

And here are two proofs about raising, injecting and splitting:

splitAt-raise : ∀ m n i → splitAt m (raise {n} m i) ≡ inj2 i
splitAt-raise zero n i = refl
splitAt-raise (suc m) n i

rewrite splitAt-raise m n i = refl

splitAt-inject+ : ∀ m n i → splitAt m (inject+ n i) ≡ inj1 i
splitAt-inject+ (suc m) n fzero = refl
splitAt-inject+ (suc m) n (fsuc i)

rewrite splitAt-inject+ m n i = refl

9

Chapter 2

Regular Expressions

2.1 Definition
Regular expressions can be defined recursively based on an alphabet Σ. The language of
a regular expression R is denoted as L(R).
Base cases:

• ∅ is a regular expression and L(∅) is ∅, the empty language

• ε is a regular expression and L(ε) is {ε}, the language containing just the empty
string

• c, where c is an element of the alphabet Σ, is a regular expression and L(c) is {c},
the language containing the single-character string c

Induction:

• R + S is a regular expression denoting L(R) ∪ L(S), where R and S are regular
expressions

• R ·S is a regular expression denoting L(R)L(S), where R and S are regular expres-
sions

• R∗ is a regular expression denoting (L(R))∗, where R is a regular expression

2.2 Implementation
In Agda, we first define the regular expression type:

10

module Regexp (Σ : Set) where
ε = []
infixl 6 _+_
infixl 7 _·_
infixl 8 _*
data RegExp : Set where

〈〉 : RegExp
〈ε〉 : RegExp
Atom : Σ → RegExp
+ : RegExp → RegExp → RegExp
· : RegExp → RegExp → RegExp
_* : RegExp → RegExp

It has six constructors:

• <> is the constructor for the regular expression denoting the empty language

• <ε> is the constructor for the regular expression denoting the language containing
the empty string

• Atom receives an element of the alphabet as a parameter and builds a regular ex-
pression denoting the language containing the single-character string described by
the parameter

• + receives two regular expressions as parameters and builds the regular expression
denoting the union of the two languages denoted by the parameters

• · receives two regular expressions as parameters and builds the regular expression
denoting the concatenation of the language of the left-side regular expression to the
language of the right-side regular expression

• ∗ receives a regular expression as a parameter and builds the regular expression
accepting the concatenation of zero or indefinitely more strings of the language of
the parameter

For example, fixing the alphabet to Σ = {a, b, c}, we can define the following regular
expressions:

• (aa)∗, denoting the language with even number of as

• a ∗ b?a∗, denoting the strings of as and bs with at most one b

• a ∗ b∗, denoting the strings of as followed by bs

11

• (a(c+ b))∗, denoting the strings of pairs of a followed by either c or b

[aa]* = (Atom a · Atom a) *
a*b?a* = Atom a * · (Atom b + 〈ε〉) · Atom a *
a*b* = Atom a * · Atom b *
[a[c+b]]* = (Atom a · (Atom c + Atom b)) *

Our current definition of regular expressions is only syntactic and does not hold any infor-
mation about their languages. We define the semantics of the languages as an inductive
relation between strings and regular expressions:

data _∈_ : String → RegExp → Set where
in-ε : ε ∈ 〈ε〉
in-*1 : ∀ {E : RegExp}

→ ε ∈ (E *)
in-c : (c : Σ) → (c :: ε) ∈ Atom c
in-· : ∀ {s t : String} {E F : RegExp}

→ s ∈ E
→ t ∈ F
→ (s ++ t) ∈ (E · F)

in+l : ∀ {s : String} {E F : RegExp}
→ s ∈ E
→ s ∈ (E + F)

in+r : ∀ {s : String} {E F : RegExp}
→ s ∈ F
→ s ∈ (E + F)

in-*2 : ∀ {s t : String} {E : RegExp}
→ s ∈ E
→ t ∈ (E *)
→ (s ++ t) ∈ (E *)

There are three base cases:

• the empty string ε belongs to L(ε)

• for any regular expression E, the empty string ε belongs to L(E∗)

• given an element c of the alphabet Σ, the single-character string c belongs to the
language of the regular expression Atom c

Induction:

12

• for any s, t, E, F , if s belongs to L(E) and if t belongs to L(F) then the concatena-
tion of the strings st belongs to L(E · F)

• given s and E such that s belongs to L(E), s belongs to L(E + F) for any regular
expression F

• given s and F such that s belongs to L(F), s belongs to L(E + F) for any regular
expression E

• given s, t and E, if s belongs to L(E) and if t belongs to L(E∗), then st belongs to
L(E∗)

Referring to the regular expressions previously defined, we can show some examples of
constructive definitions of membership relations.
The regular expression (aa)* matches aaaa, and so the relation aaaa ∈ L((aa)∗) can
be defined as follows:

x : (a :: a :: a :: a :: []) ∈ [aa]*
x = in-*2 (in-· (in-c a) (in-c a))

(in-*2 (in-· (in-c a) (in-c a)) in-*1)

For a*b?a*, we can show that the relation aba ∈ L(a ∗ b?a∗) holds:

y : (a :: b :: a :: []) ∈ a*b?a*
y = in-· (in-· (in-*2 (in-c a) in-*1)

(in+l (in-c b)))
(in-*2 (in-c a) in-*1)

For a*b*, we can show that aabbb ∈ L(a ∗ b∗):

z : (a :: a :: b :: b :: b :: []) ∈ a*b*
z = in-· (in-*2 (in-c a)

(in-*2 (in-c a) in-*1))
(in-*2 (in-c b)

(in-*2 (in-c b)
(in-*2 (in-c b) in-*1)))

And for our last regular expression (a(c + b))*, we can show that abac ∈ L((a(c +
b))∗)

v : (a :: b :: a :: c :: []) ∈ [a[c+b]]*
v = in-*2 (in-· (in-c a) (in+r (in-c b)))

(in-*2
(in-· (in-c a) (in+l (in-c c))) in-*1)

13

We can already prove some properties on our membership predicate. For example, given
a relation s ∈ (E · F), we can show that s can be divided into two strings t, u, such
that t ∈ E and u ∈ F:

split-seq : ∀{s E F}
→ s ∈ (E · F)
→ ∃[u] ∃[v] ((s ≡ u ++ v) × (u ∈ E) × (v ∈ F))

split-seq (in-· p q) = _ , _ , refl , p , q

We can prove a similar property for the star operation:

split-* : ∀{E s}
→ s ∈ (E *)
→ s 6≡ ε
→ ∃[u] ∃[v] (u 6≡ ε × s ≡ u ++ v × u ∈ E × v ∈ (E *))

split-* in-*1 q = ⊥-elim (q refl)
split-* (in-*2 {[]} p q) neps = split-* q neps
split-* (in-*2 {x :: s} {t} p q) _ = x :: s , t , (λ ()) , refl , p , q

A consequence of split-seq is the fact that if the empty string belongs to the concate-
nation of two regular expression, then the empty string belongs to the languages of both
regular expressions.

ε-seq : ∀{E F} → ε ∈ (E · F) → ε ∈ E × ε ∈ F
ε-seq p with split-seq p
... | [] , [] , refl , p1 , p2 = p1 , p2

2.3 Algebraic laws for regular expressions
Two regular expressions are equivalent if they denote the same language. For example,
given two regular expressions a and b, the regular expressions a + b and b + a denote
the same language. This is also known as the commutativity law of +. To prove it we use
isomorphism between types. We show that for an arbitrary string s and regular expressions
E and F , the relation s ∈ (E + F) is isomorphic to the relation s ∈ (F + E):

+-comm : ∀ {s : String} {E F : RegExp}
→ s ∈(E + F) ' s ∈(F + E)

+-comm {s} {E} {F} =
record

{ to = to
; from = from

14

; from◦to = from◦to
; to◦from = to◦from
}

where
to : s ∈(E + F) → s ∈(F + E)
to (in+l x) = in+r x
to (in+r x) = in+l x

from : s ∈(F + E) → s ∈(E + F)
from (in+l x) = in+r x
from (in+r x) = in+l x

from◦to : (x : s ∈ (E + F)) → from (to x) ≡ x
from◦to (in+l x) = refl
from◦to (in+r x) = refl

to◦from : (x : s ∈ (F + E)) → to (from x) ≡ x
to◦from (in+l x) = refl
to◦from (in+r x) = refl

Another example is the fact that the regular expression E(F +G) is equivalent to (EF +
EG). This is also known as the distributive law of + over concatenation:

seq-distrib-+l : ∀ {s : String} {E F G : RegExp}
→ s ∈(E · (F + G)) ' s ∈(E · F + E · G)

seq-distrib-+l {s} {E} {F} {G} =
record

{ to = to
; from = from
; from◦to = from◦to
; to◦from = to◦from }

where
to : s ∈ (E · (F + G)) → s ∈ (E · F + E · G)
to (in-· x (in+l y)) = in+l (in-· x y)
to (in-· x (in+r y)) = in+r (in-· x y)

from : s ∈ (E · F + E · G) → s ∈ (E · (F + G))
from (in+l (in-· x y)) = in-· x (in+l y)
from (in+r (in-· x y)) = in-· x (in+r y)

from◦to : (x : s ∈ (E · (F + G))) → from (to x) ≡ x

15

from◦to (in-· x (in+l y)) = refl
from◦to (in-· x (in+r y)) = refl

to◦from : (y : s ∈ (E · F + E · G)) → to (from y) ≡ y
to◦from (in+l (in-· y y1)) = refl
to◦from (in+r (in-· y y1)) = refl

In our work, we proved many other algebraic laws, such as associativity of +, identity of
concatenation and idempotency of ∗, which can be found in our Agda files.

2.4 Decidable membership using derivatives
To determine whether or not a string belongs to the language denoted by a regular expres-
sion, one cannot simply list and compare all the strings of the language until he finds a
match, as they may be infinite (e.g. L(a∗)). To solve this problem we show an algorithm
which makes use of a concept of derivatives on regular expressions, also known as Brzo-
zowski’s Derivatives. Later we show another way to solve the problem, by transforming
regular expressions into finite state automata.

2.4.1 Nullable predicate
Initially we define the Nullable predicate. A regular expression E is Nullable when
ε ∈ L(E). We proceed with an inductive datatype:

data Nullable : RegExp → Set where
null〈ε〉 : Nullable 〈ε〉
null+l : ∀{F G} → Nullable F → Nullable (F + G)
null+r : ∀{F G} → Nullable G → Nullable (F + G)
null· : ∀{F G} → Nullable F → Nullable G → Nullable (F · G)
null* : ∀{F} → Nullable (F *)

The empty string belongs to the regular expressions 〈ε〉 and F*, for any F. If a regular
expression F contains ε, then its union with any other regular expression contains ε. If ε
belongs to two regular expressions F and G, then it belongs to their concatenation.
All the regular expressions defined previously satisfy the Nullable predicate, whereas,
for instance, Atom c does not:

x : Nullable [aa]*
x = null*

16

y : Nullable a*b?a*
y = null· (null· null* (null+r null〈ε〉)) null*

z : Nullable a*b*
z = null· null* null*

u : Nullable [a[c+b]]*
u = null*

v : ¬ Nullable (Atom a)
v = λ ()

Is our Nullable predicate actually correct? We need to prove that ε belongs to the
language of a regular expression E if and only if E is Nullable. Here is the proof:

theorem1 : ∀{E : RegExp}
→ ε ∈(E) ⇔ Nullable E

theorem1 = record { to = to ; from = from }
where

to : ∀{E} → ε ∈ E → Nullable E
to {〈ε〉} _ = null〈ε〉
to {E + F} (in+l x) = null+l (to x)
to {E + F} (in+r x) = null+r (to x)
to {E · F} x with ε-seq x
... | ε∈E , ε∈F = null· (to ε∈E) (to ε∈F)
to {E *} _ = null*

from : ∀{E} → Nullable E → ε ∈ E
from null〈ε〉 = in-ε
from (null+l x) = in+l (from x)
from (null+r x) = in+r (from x)
from (null· x y) = in-· (from x) (from y)
from null* = in-*1

The Nullable predicate is decidable, meaning that we can always know if a regular
expression is Nullable or not, and as a consequence if its language contains the empty
string or not. We define this property as a function which takes a regular expression E and
produces Dec (Nullable E):

Nullable? : (E : RegExp) → Dec (Nullable E)
Nullable? 〈〉 = no (λ ())
Nullable? 〈ε〉 = yes null〈ε〉

17

Nullable? (Atom c) = no (λ ())
Nullable? (r + s) with Nullable? r | Nullable? s
... | yes p | _ = yes (null+l p)
... | _ | yes q = yes (null+r q)
... | no ¬p | no ¬q = no λ{ (null+l p) → ⊥-elim (¬p p)

; (null+r q) → ⊥-elim (¬q q) }
Nullable? (r · s) with Nullable? r | Nullable? s
... | yes p | yes q = yes (null· p q)
... | _ | no ¬q = no λ{ (null· _ q) → ⊥-elim (¬q q) }
... | no ¬p | _ = no λ{ (null· p _) → ⊥-elim (¬p p) }
Nullable? (r *) = yes null*

2.4.2 Derivative
The derivative of a regular expression E with respect to an element a of the alphabet is
defined by induction on the structure of E, denoted as E[a]:

[] : RegExp → Σ → RegExp
〈〉 [a] = 〈〉
〈ε〉 [a] = 〈〉
(Atom b)[a] with b ?

= a
... | yes p = 〈ε〉
... | no ¬p = 〈〉
(F + G)[a] = F [a] + G [a]
(F · G)[a] with Nullable? F
... | yes p = F [a] · G + G [a]
... | no ¬p = F [a] · G
(F *)[a] = F [a] · F *

For example, the derivative of (aa)* with the symbol a, denoted as (aa)*[a], is equal
to (aa)[a] (aa)*, which becomes a[a] a(aa)* and gets reduced to εa(aa)*. If
we use b instead of a, we get that (aa)*[b] = (aa)[b] (aa)* = a[b] a(aa)*
= 〈〉a(aa)*. Since 〈〉 is the annihilator of concatenation, we can show that no strings
belong to this last derivative:

x : [aa]* [a] ≡ 〈ε〉 · Atom a · [aa]*
x = refl

y : [aa]* [b] ≡ 〈〉 · Atom a · [aa]*
y = refl

18

yp : ∀{s} → ¬ s ∈ [aa]* [b]
yp (in-· (in-· () _) _)

Given a regular expression E, a symbol a and a string v,

av ∈ L(E)⇔ v ∈ L(E[a]).

For example, the string aaaa belongs to the language of (aa)* and the string aaa
belongs to the language of (aa)*[a]:

x1 : (a :: a :: a :: a :: []) ∈ [aa]*
x1 = in-*2 (in-· (in-c a) (in-c a))

(in-*2 (in-· (in-c a) (in-c a)) in-*1)

x2 : (a :: a :: a :: []) ∈ ([aa]* [a])
x2 = in-· (in-· in-ε (in-c a))

(in-*2 (in-· (in-c a) (in-c a)) in-*1)

We prove this property by induction on the membership predicate, in both directions. We
also use the previously proven properties theorem1, split-seq and split-*:

theorem2 : ∀{a : Σ} {v : String} {E : RegExp}
→ v ∈(E [a]) ⇔ (a :: v) ∈(E)

theorem2 = record { to = to ; from = from }
where

to : ∀{a v E} → v ∈(E [a]) → (a :: v) ∈(E)
to {a} {v} {Atom c} x with c ?

= a
to {_} {[]} {Atom c} x | yes refl = in-c c
to {E = F + G} (in+l x) = in+l (to x)
to {E = F + G} (in+r x) = in+r (to x)
to {E = F · G} x with Nullable? F
to {E = F · G} (in+l (in-· x y)) | yes p

= in-· (to x) y
to {E = F · G} (in+r x) | yes p

= in-· (_⇔_.from theorem1 p) (to x)
to {E = F · G} (in-· x y) | no ¬p
= in-· (to x) y

to {E = F *} (in-· x y) = in-*2 (to x) y

from : ∀ {a}{v}{E} → (a :: v) ∈ E → v ∈ E [a]
from {_} {_} {Atom c} (in-c .c) with c ?

= c
... | yes p = in-ε

19

... | no ¬p = ⊥-elim (¬p refl)
from {E = F + G} (in+l x) = in+l (from x)
from {E = F + G} (in+r x) = in+r (from x)
from {E = F · G} x with Nullable? F | split-seq x
... | yes p | [] , av , refl , _ , av∈G
= in+r (from av∈G)

... | yes p | a :: u , t , refl , au∈F , t∈G
= in+l (in-· (from au∈F) t∈G)

... | no ¬p | [] , _ , refl , ε∈F , _
= ⊥-elim (¬p (_⇔_.to theorem1 ε∈F))

... | no ¬p | a :: u , t , refl , au∈F , t∈G
= in-· (from au∈F) t∈G

from {E = F *} x with split-* x (λ ())
... | [] , _ , ¬p , _ , _ , _ = ⊥-elim (¬p refl)
... | a :: t , v , _ , refl , at∈E , v∈E*

= in-· (from at∈E) v∈E*

2.4.3 Decidable membership
We can show that a string v = a1a2 · · · an belongs to the language of a regular expression
F if and only if we obtain a Nullable regular expression after applying derivation on F
with each symbol in v:

v ∈ L(F)⇔ Nullable (F [a1][a2] · · · [an])

The proof is by induction on v, as an immediate consequence of theorem1 and theorem2
:

theorem3 : ∀ {v : String} {F : RegExp}
→ v ∈(F) ⇔ Nullable (foldl _[_] F v)

theorem3 = record { to = to ; from = from }
where
to : ∀ {v} {F} → v ∈(F) → Nullable (foldl _[_] F v)
to {[]} x = _⇔_.to theorem1 x
to {v :: vs} x = to (_⇔_.from theorem2 x)

from : ∀ {v} {F} → Nullable (foldl _[_] F v) → v ∈ F
from {[]} x = _⇔_.from theorem1 x
from {v :: vs} x = _⇔_.to theorem2 (from x)

The Nullable predicate is decidable and both foldl and derivation are executable
functions. Therefore, given an arbitrary string v and an arbitrary regular expression F, we

20

can use theorem3, Nullable?, foldl and [] to check if the membership relation
v ∈ F holds:

∈? : (v : String) → (F : RegExp) → Dec (v ∈ F)
v ∈? F with Nullable? (foldl _[_] F v)
... | yes p = yes (_⇔_.from theorem3 p)
... | no ¬p = no (λ z → ¬p (_⇔_.to theorem3 z))

In other words, we can check if a string belongs to the language of a regular expression.
Here is an example:

v = (a :: b :: a :: a :: a :: a :: a :: a :: a :: a :: [])
e1 = v ∈? a*b?a*
e2 = (b :: v) ∈? a*b?a*

By evaluating e1, Agda determines that v belongs to the language of a*b?a* and pro-
vides the following construction:

yes
(in-· (in-· (in-*2 (in-c a) in-*1) (in+l (in-c b)))

(in-*2 (in-c a)
(in-*2 (in-c a)
(in-*2 (in-c a)
(in-*2 (in-c a)
(in-*2 (in-c a)
(in-*2 (in-c a)
(in-*2 (in-c a)
(in-*2 (in-c a) in-*1)))))))))

On the other hand, as expected, the evaluation of e2 determines that the membership
relation does not hold, since the regular expression allows only one b.

21

Chapter 3

Finite State Automata

In this chapter we introduce deterministic finite state automata (DFAs) and non-deterministic
finite state automata (NFAs). We emulate the inductive operations of regular expressions
(concatenation, union, star) using NFAs and we use them to recursively transform regular
expressions into NFAs which recognize the same languages. In the last section, we prove
the pumping lemma for DFAs using the pigeonhole principle and provide an example of a
non-regular language.

3.1 Deterministic Finite Automata
A deterministic finite state automaton is a 5-tuple, (Q,Σ, δ, S, F), consisting of:

• a finite set of states Q

• a finite set of input symbols called the alphabet Σ

• a transition function δ : Q× Σ→ Q

• a starting state S ∈ Q

• a subset of final states F ⊆ Q

To enforce the finite property, in Agda we define DFAs as dependent records based on
a natural number parameter. Our states are of type Fin n. The starting state is a Fin
n element, the transition function is defined as Fin n → Σ → Fin n and the final
states subset is Subset n:

22

module Dfa (Σ : Set) where

record Dfa (n : N) : Set where
field

S : Fin n
δ : Fin n → Σ → Fin n
F : Subset n

We define two functions that will simplify the construction of DFAs. The first one is
make-δ which builds transition functions. It takes two arguments: the error state and a
list of triples that describe the transitions. The other function we will use is make-dfa.
It constructs a DFA based on a number of states, a starting state, an error state, a list of
final states and a list of transitions:

TransitionsList = λ n → List (Fin n × Σ × Fin n)

make-δ : ∀{n}
→ Fin n
→ TransitionsList n
→ (Fin n → Σ → Fin n)

make-δ err [] = λ _ _ → err
make-δ err ((q , x , p) :: xs)

= λ h y → if b q ?
=
f h c ∧ b x ?

= y c
then p
else make-δ err xs h y

make-dfa : (n : N)
→ Fin n
→ Fin n
→ List (Fin n)
→ TransitionsList n
→ Dfa n

make-dfa n start error finals transitions
= record
{ S = start
; δ = make-δ error transitions
; F =

⋃
(map J_K finals)

}

We can now declaratively build DFAs.
For example, we can implement the DFAs which recognize the same languages of the

23

regular expressions previously used. As a convention, all undefined transitions end up in
the error state and are not shown in the diagrams. For (aa)*, we can use three states
{0, 1, 2}, where 0 is the starting state and 2 is the error state:

0start 1

a

a

dfa-[aa]* = make-dfa 3 0F 2F (0F :: []) (
(0F , a , 1F)

:: (1F , a , 0F)
:: []

)

The regular expression a*b?a* can also be defined using three states, where 0 is the
starting state and 2 is the error state:

0start 1

a

b

a

dfa-a*b?a* = make-dfa 3 0F 2F (0F :: 1F :: []) (
(0F , a , 0F)

:: (0F , b , 1F)
:: (1F , a , 1F)
:: []

)

The implementation for a*b* is very similar to the previous one:

0start 1

a

b

b

dfa-a*b* = make-dfa 3 0F 2F (0F :: 1F :: []) (
(0F , a , 0F)

:: (0F , b , 1F)
:: (1F , b , 1F)
:: []

)

24

For (a(c+b))* we again use three states:

0start 1

a

c,b

dfa-[a[c+b]]* = make-dfa 3 0F 2F (0F :: []) (
(0F , a , 1F)

:: (1F , b , 0F)
:: (1F , c , 0F)
:: []

)

3.1.1 Extended transition function
The language of a DFA is the set of strings for which the computation from the starting
state ends up in a final state. We can express the computation as a function, also known
as the extended transition function. It receives a DFA as input, a state, and a string and
recursively computes the resulting state based the definition of the δ function of the DFA:

open Dfa

δˆ : ∀{n} → (dfa : Dfa n) → (q : Fin n) → String → Fin n
δˆ dfa q [] = q
δˆ dfa q (x :: s) = δˆ dfa (δ dfa q x) s

Here is a simple property about the extended transition function applied to the concatena-
tion of two strings:

lemma-δˆ : ∀{n}
(dfa : Dfa n)
→ (s : String)
→ (t : String)
→ (q : Fin n)
→ δˆ dfa q (s ++ t) ≡ δˆ dfa (δˆ dfa q s) t

lemma-δˆ dfa [] t q = refl
lemma-δˆ dfa (c :: s) t q = lemma-δˆ dfa s t (δ dfa q c)

3.1.2 Language of a DFA
A string s belongs to the language of a DFA A, here denoted as A s, if the extended tran-
sition function leads to a final state, beginning at the starting state of A. Since the result of

25

the extended transition function is of type Fin n and the subset of final states is of type
Subset n, we define the membership relation between strings and DFAs as the mem-
bership relation between Fin n and Subset n.
As shown previously, the membership relation between Fin n and Subset n is decid-
able. Therefore, membership between strings and languages of DFAs is also decidable.

infix 10 _↓_
↓ : ∀{n} → Dfa n → String → Set
dfa ↓ s = δˆ dfa (S dfa) s ∈ F dfa

↓? : ∀{n} → (dfa : Dfa n) → (s : String) → Dec (dfa ↓ s)
dfa ↓? s = δˆ dfa (S dfa) s ∈? F dfa

We can immediately tell if a string is accepted or rejected by simply evaluating the result of
the extended transition function. For example, the DFA for the regular expression (aa)*
accepts aa and rejects string aaa:

p0 : dfa-[aa]* ↓ (a :: a :: [])
p0 = tt

p1 : ¬ dfa-[aa]* ↓ (a :: a :: a :: [])
p1 ()

Another example is the fact that the DFA for a*b?a* accepts aba and rejects bba:

p2 : dfa-a*b?a* ↓ (a :: b :: a :: [])
p2 = tt

p3 : ¬ dfa-a*b?a* ↓ (b :: b :: a :: [])
p3 ()

3.2 Non-deterministic Finite Automata
Every regular expression can be transformed into a finite state automaton that recognizes
the same language (the inverse is also true). Except for the base cases, there are three basic
language operations upon which regular expressions are defined: union, concatenation,
and star. Implementing these operations using DFAs is rather difficult, so we introduce
a new concept of finite state automata: Non-deterministic finite state automata. NFAs
might seem more powerful than DFAs, but it can be shown that they are equivalent. In our
implementation, we won’t use spontaneous transitions, as they could require additional
termination proofs.

26

3.2.1 Definition
The NFA type is similar to the DFA one, except for the transition function which produces
a Subset n instead of a single state:

record Nfa (n : N) : Set where
field

S : Fin n
δ : Fin n → Σ → Subset n
F : Subset n

To simplify the constructions, we define the helper functions make-nfa-δ and make-nfa
similarly to the ones used for DFAs, with the addition that the third element of the transi-
tions triples is a list of reached states instead of a single state:

NfaTransitionsList = λ n → List (Fin n × Σ × List (Fin n))

make-nfa-δ : ∀{n}
→ Fin n
→ NfaTransitionsList n
→ (Fin n → Σ → Subset n)

make-nfa-δ err [] = λ _ _ → J err K
make-nfa-δ err ((q , x , ps) :: xs)
= λ h y → if b q ?

=
f h c ∧ b x ?

= y c
then

⋃
(map J_K ps)

else make-nfa-δ err xs h y

make-nfa : (n : N)
→ Fin n
→ Fin n
→ List (Fin n)
→ NfaTransitionsList n
→ Nfa n

make-nfa n start error finals transitions
= record

{ S = start
; δ = make-nfa-δ error transitions
; F =

⋃
(map J_K finals)

}

For example, we can implement a NFA accepting the strings of as and bs containing the
substring babb.

27

0start 1 2 3 4

a,b

b a b b

a,b

nfa-babb-substring = make-nfa 6 0F 5F (4F :: []) (
(0F , a , 0F :: [])

:: (0F , b , 0F :: 1F :: [])
:: (1F , a , 2F :: [])
:: (2F , b , 3F :: [])
:: (3F , b , 4F :: [])
:: (4F , a , 4F :: [])
:: (4F , b , 4F :: [])
:: []

)

Another example is the NFA accepting as terminating by abc:

0start 1 2 3

a

a b c

nfa-term-by-abc = make-nfa 5 0F 4F (3F :: []) (
(0F , a , 0F :: 1F :: [])

:: (1F , b , 2F :: [])
:: (2F , c , 3F :: [])
:: []

)

3.2.2 Language
The Subset n result of the δ adds the non-determinism. The computation of a NFA is
no longer linear, as it proceeds on all the ramifications of the resulting subsets of δ. A
string is accepted if the NFA reaches a final state in any of the branches:

open Nfa
accepts : ∀{n} → Nfa n → Fin n → String → Bool
accepts A q [] = F A ! q

28

accepts A q (c :: s)
= any λ p → (δ A q c) ! p ∧ accepts A p s

Where any checks if any number of type Fin n satisfies a given function:

any : ∀{n} → (P : Fin n → Bool) → Bool
any {zero} P = false
any {suc _} P = P fzero ∨ any λ x → P (fsuc x)

A string belongs to the language of a NFA A if A accepts the string beginning at its starting
state:

↓ : ∀{n} → Nfa n → String → Set
A ↓ s = T (accepts A (S A) s)

Since accepts is a simple function, the membership relation A ↓ s becomes easily
decidable by evaluating the result of accepts:

↓? : ∀{n} → (A : Nfa n) → (s : String) → Dec (A ↓ s)
A ↓? s = T? (accepts A (S A) s)

For example, referring to the NFA nfa-babb-substring, we can show that it accepts
the strings babb and ababbbb, but rejects the string aba:

babb : String
babb = b :: a :: b :: b :: []

x : nfa-babb-substring ↓ babb
x = tt

y : nfa-babb-substring ↓ (a :: babb ++ b :: b :: [])
y = tt

z : ¬ nfa-babb-substring ↓ (a :: b :: a :: [])
z ()

Another example is the fact that nfa-term-by-abc accepts the strings abc and aaaabc
but rejects the string bac:

abc : String
abc = a :: b :: c :: []

t : nfa-term-by-abc ↓ (abc)

29

t = tt

u : nfa-term-by-abc ↓ (a :: a :: a :: abc)
u = tt

v : ¬ nfa-term-by-abc ↓ (b :: a :: c :: [])
v ()

When a NFA A accepts a non-empty string like x :: xs from a state q, we can compute
one “next” state reached from q with symbol x, from which A accepts xs:

-- Lemma
anyToExists : ∀{n} {f : Fin n → Bool}

→ T (any f)
→ ∃[i] T(f i)

nextState : ∀{n x xs q} {nfa : Nfa n}
→ T (accepts nfa q (x :: xs))
→ ∃[p] (p ∈ (δ nfa q x) × T (accepts nfa p xs))

nextState {n} acc-x-xs with anyToExists {n} acc-x-xs
... | p , p∈δqx_∧_acc-p-xs = p , (splitAnd p∈δqx_∧_acc-p-xs)

Saying that a NFA accepts the empty string is equivalent to saying that its starting state is
final:

emptyLanguage : ∀{n} {nfa : Nfa n}
→ nfa ↓ ε ≡ S nfa ∈ F nfa

emptyLanguage = refl

3.2.3 Union
Given two NFAs A and B, we can build a new NFA C whose language is the union of the
two: L(C) = L(A) ∪ L(B). The number of states of the resulting NFA is the sum of the
number of states of the original two, with one additional state. This additional state is also
the starting state. Given a state q and a symbol c, the transition function δ(q, c) is defined
in the following way:

• case q is zero (the additional starting state): the resulting subset contains the states
reached by A and B from their starting states with the given input symbol c

• case q is a state of A: the resulting subset contains the states reached by A from q
with c

30

• case q is a state of B: the resulting subset contains the states reached by B from q
with c

The final states subset contains the final states of A and B and eventually the new
starting state if the empty string belongs to A or B.
Given two subsets T of size n and U of size m, using the vector concatenation function,
we can create a subset of size n+m containing distinctly all the elements of T and U .
We use the previously described function splitAt to determine if a given state of type
Fin (1 + n + m) is the additional state, a state of A or a state of B.

union : ∀{n m} → Nfa n → Nfa m → Nfa (1 + n + m)
union {n} {m} A B =
record
{ S = fzero
; δ = d
; F = sf ++ (F A) ++ (F B)
}

where
d : Fin (1 + n + m) → Σ → Subset (1 + n + m)
d q c with splitAt 1 q
d q c | inj1 z = ∅ {1} ++ (δ A (S A) c) ++ (δ B (S B) c)
d q c | inj2 f with splitAt n f
... | inj1 l = ∅ {1} ++ (δ A l c) ++ ∅
... | inj2 r = ∅ {1} ++ ∅ ++ (δ B r c)

sf : Subset 1
sf with A ↓? ε | B ↓? ε
sf | no ε6∈l | no ε6∈r = ∅
sf | _ | _ = FullSet

For example, we can build the union of the two NFAs previously introduced and we can
show it accepts abc and babb but rejects bac:

nfa-union-babb-abc = union nfa-babb-substring nfa-term-by-abc

q : nfa-union-babb-abc ↓ (abc)
q = tt

r : nfa-union-babb-abc ↓ (b :: a :: b :: b :: [])
r = tt

31

s : ¬ nfa-union-babb-abc ↓ (b :: a :: c :: [])
s ()

Before proving that the construction is correct, we first need to prove that the two NFAs
are still present in the new NFA after the construction. We show this by proving that both
NFAs individually accept a string from a state if and only if they accept it from the same
state relatively injected/raised into the union.
The proofs are by induction on the string. For the NFA provided as first argument, the
relative state is injected:

union-preservesl : ∀{n m} {A : Nfa n} {B : Nfa m} {q : Fin n}
→ (s : String)
→ T (accepts A q s)
⇔
T (accepts (union A B) (fsuc (inject+ m q)) s)

union-preservesl {n}{m} {A} {B} {q} s =
record { to = to s q ; from = from s q }
where
to : (s : String) (q : Fin n)

→ T (accepts A q s)
→ T (accepts (union A B) (fsuc (inject+ m q)) s)

to [] q acc with
A ↓? ε

| B ↓? ε
| ++-inject (F A) (F B) q acc

...| yes _ | yes _ | v = v

...| yes _ | no _ | v = v

...| no _ | yes _ | v = v

...| no _ | no _ | v = v
to (c :: s) q acc with nextState {_} {c} {s} acc
... | w , w∈δqc , t rewrite splitAt-inject+ n m q

with to s w t
| ++-inject {n}{m} (δ A q c) ∅ w w∈δqc

... | z | d = fromExists (inject+ m w , (joinAnd d z))

from : (s : String) (q : Fin n)
→ T (accepts (union A B) (fsuc (inject+ m q)) s)
→ T (accepts A q s)

from [] q d rewrite
sym (lookup-++l (F A) (F B) q)

with A ↓? ε | B ↓? ε

32

... | yes _ | yes _ = d

... | yes _ | no _ = d

... | no _ | yes _ = d

... | no _ | no _ = d
from (x :: s) q d with nextState {_} {x} {s} {fsuc (inject+ m q)} d
... | w , w∈δqx , accWs rewrite splitAt-inject+ n m q

with q∈ss++∅ w (δ A q x) w∈δqx
... | p , eq , ds rewrite eq =
fromExists (p , joinAnd ds (from s p accWs))

For the NFA provided as second argument, the proof is essentially the same and we only
list its statement:

union-preservesr : ∀{n m} {A : Nfa n} {B : Nfa m} {q : Fin m}
→ (s : String)
→ T (accepts B q s)
⇔
T (accepts (union A B) (fsuc (raise n q)) s)

We now show that a string belongs to the language of the union if and only if it belongs to
the language of the first or the second NFA.
The proof is by induction on the string as a consequence of union-preservesl and
union-preservesr:

union-correct : ∀{n m : N} {A : Nfa n} {B : Nfa m}
→ (s : String)
→ A ↓ s] B ↓ s ⇔ union A B ↓ s

union-correct {n}{m}{A}{B} s =
record { to = to s ; from = from s }
where
to : (s : String) → A ↓ s] B ↓ s → union A B ↓ s
to [] ac with A ↓? ε | B ↓? ε
... | yes _ | yes _ = tt
... | yes _ | no _ = tt
... | no _ | yes _ = tt
... | no ¬p | no ¬q = ⊥-elim ((¬p ¬-] ¬q) ac)

to (c :: s) (inj1 A↓cs) with nextState {_} {c} {s} A↓cs
... | w , w∈δA , accepts-s-w-A

with ++-inject (δ A (S A) c) (δ B (S B) c) w w∈δA
| _⇔_.to (union-preservesl s) accepts-s-w-A

... | w∈δA∪B | accepts-s-w-A∪B

33

= fromExists (inject+ m w , joinAnd w∈δA∪B accepts-s-w-A∪B)

to (c :: s) (inj2 B↓cs) with nextState {_} {c} {s} B↓cs
... | w , w∈δB , accepts-w-B

with ++-raise (δ A (S A) c) (δ B (S B) c) w w∈δB
| _⇔_.to (union-preservesr s) accepts-w-B

... | w∈δA∪B | accepts-s-w-A∪B
= fromExists (raise n w , joinAnd w∈δA∪B accepts-s-w-A∪B)

from : (s : String) → union A B ↓ s → A ↓ s] B ↓ s
from [] d with A ↓? ε | B ↓? ε
... | yes p | yes p1 = inj1 p
... | yes p | no ¬p = inj1 p
... | no ¬p | yes p = inj2 p

from (x :: s) d with nextState {suc n + m} {x} {s} {0F} d
... | w , w∈δSc , accepts-w-s
with split-∈++ w (δ A (S A) x) (δ B (S B) x) w∈δSc

... | inj1 (p , eq , z) rewrite eq =
inj1 (fromExists (

p , joinAnd z (_⇔_.from (union-preservesl s) accepts-w-s)))
... | inj2 (p , eq , z) rewrite eq =
inj2 (fromExists (

p , joinAnd z (_⇔_.from (union-preservesr s) accepts-w-s)))

3.2.4 Concatenation
The concatenation function is similar to the union. We add a new starting state and build
the transition function based on the transition functions of the input NFAs.
Given q and c, δ(q, c) is defined as follows:

• case q is zero (the additional starting state):

– if ε 6∈ L(A): the resulting subset contains only states reached by A from its
starting state with symbol c

– if ε ∈ L(A): the resulting subset contains the states reached by both NFA from
their starting state with symbol c

• case q is a state of A:

34

– if q is not final: the resulting subset is the subset of states reached by A from q
with the symbol c

– otherwise: in addition to the previous case subset we also add the states reached
by B from its starting state with the symbol c

• case q is a state of B: the result is the subset of states reached by B from q with the
symbol c

The final states subset is defined as:

• if ε belongs to neither L(A) nor L(B): only the final states of B are final

• if ε belongs to both L(A) and L(B): the starting state is final along with the final
states of A and B

• if ε belong to L(B) but does not belong to L(A): only the final states of A and B
are final

And here is the implementation in Agda:

concat : ∀{n m} → Nfa n → Nfa m → Nfa (1 + n + m)
concat {n} {m} A B =
record

{ S = fzero
; δ = d
; F = f
}

where
d : Fin (1 + n + m) → Σ → Subset (1 + n + m)
d q c with splitAt 1 q
d _ c | inj1 z with A ↓? ε
... | yes isf = ∅ {1} ++ (δ A (S A) c) ++ (δ B (S B) c)
... | no ¬isf = ∅ {1} ++ (δ A (S A) c) ++ ∅
d _ c | inj2 mn with splitAt n mn
d _ c | inj2 mn | inj1 l with l ∈? F A
... | yes isf = ∅ {1} ++ (δ A l c) ++ (δ B (S B) c)
... | no ¬isf = ∅ {1} ++ (δ A l c) ++ ∅
d _ c | inj2 mn | inj2 r = ∅ {1} ++ ∅ ++ (δ B r c)

f : Subset (1 + n + m)
f with A ↓? ε | B ↓? ε
f | yes ε∈l | yes ε∈r = FullSet {1} ++ F A ++ F B

35

f | no ε6∈l | yes ε∈r = ∅ {1} ++ F A ++ F B
f | _ | no ε6∈r = ∅ {1} ++ ∅ ++ F B

For example, we can apply this function to our two NFAs and concatenate nfa-babb-substring
on the left of nfa-term-by-abc. We can show that the concatenation accepts babbabc
but rejects babb, because the NFA nfa-term-by-abc is on the right and requires a
string terminating by abc:

nfa-concat-babb-abc = concat nfa-babb-substring nfa-term-by-abc

o : nfa-concat-babb-abc ↓ (babb ++ abc)
o = tt

p : ¬ nfa-concat-babb-abc ↓ babb
p ()

The correctness proofs follow the same techniques used for the union. We first show that
the two NFAs are preserved in the concatenation after the construction. Then we conclude
that a string s belongs to the concatenation if and only if it can be divided into two strings
u, v such that u belongs to L(A) and v belongs to L(B). Here are the statements of these
properties:

concat-preservesr : ∀{n m : N} {p} {A : Nfa n} {B : Nfa m}
→ (v : String)
→ T(accepts B p v)
⇔
T(accepts (concat A B) (raise 1 (raise n p)) v)

concat-preservesl : ∀{n m : N} {q} {A : Nfa n} {B : Nfa m}
→ (s : String)
→ T(accepts (concat A B) (fsuc (inject+ m q)) s)
⇔
∃[u] ∃[v] (s ≡ u ++ v × T(accepts A q u) × B ↓ v)

concat-correct : ∀{n m : N} {A : Nfa n} {B : Nfa m}
→ (s : String)
→ concat A B ↓ s
⇔
∃[u] ∃[v] (s ≡ u ++ v × A ↓ u × B ↓ v)

36

3.2.5 Star
Given a NFA A with n states, we can define the star operation by adding one single state.
It is the new starting state and it is also final, as the empty string always belongs to the star
closure. The transition function δ(q, c) is defined as follows:

• if q is the additional state: the result is the subset of states reached by A from its
starting state with symbol c

• otherwise, q is one of the states of A:

– if q is final: the resulting subset contains the states reached by A with symbol
c from both q and its starting state

– otherwise: the result is simply the subset of states reached by A from q with c

star : ∀{n} → Nfa n → Nfa (1 + n)
star {n} nfa =

record { S = fzero ; δ = d ; F = J fzero K ++ F nfa }
where

d : Fin (1 + n) → Σ → Subset (1 + n)
d q c with splitAt 1 q
d _ c | inj1 z = ∅ ++ δ nfa (S nfa) c
d _ c | inj2 p with p ∈? F nfa
... | yes isf = ∅ ++ (δ nfa (S nfa) c) ∪ (δ nfa p c)
... | no ¬isf = ∅ ++ δ nfa p c

For example, we can show that the star construction of nfa-term-by-abc accepts
the strings abcabc and abcaaabc but rejects abccc:

k : nfa-star-term-abc ↓ (abc ++ abc)
k = tt

l : nfa-star-term-abc ↓ (abc ++ a :: a :: abc)
l = tt

m : ¬ nfa-star-term-abc ↓ (abc ++ c :: c :: [])
m ()

Again, we first show that the original NFA is preserved after the star construction and then
conclude with the correctness. However, in this case, we have two separate proofs, as
the empty string always belongs to the star construction but might not be accepted by the
original NFA. Here are the statements:

37

star-preserves : ∀{n} {nfa} {q : Fin n} {s}
→ T(accepts (star nfa) (fsuc q) s)
⇔
∃[u] ∃[v] (

s ≡ u ++ v
× T(accepts nfa q u)
× star nfa ↓ v)

star-correct1 : ∀{n} {s v : String} {nfa : Nfa n}
→ nfa ↓ s × (star nfa) ↓ v
→ (star nfa) ↓ (s ++ v)

star-correct2 : ∀{n} {a} {s : String} {nfa : Nfa n}
→ (star nfa) ↓ (a :: s)
→ ∃[u] ∃[v](

s ≡ u ++ v
× nfa ↓ (a :: u)
× star nfa ↓ v)

3.3 Deciding RegExp membership using NFAs

3.3.1 NFAs for L(∅), L({ε}), L({c})
Before diving into the generation of a NFA from a regular expression, we first define the
NFAs for the base cases: L(∅), L({ε}), L({c}).
For the empty language, we use one single state which is the starting state and it is not
final:

nfa-∅ : Nfa 1
nfa-∅ = record { S = 0F ; δ = λ _ _ → J 0F K ; F = ∅ }

nfa-∅-is-empty : (s : String) → ¬ (nfa-∅ ↓ s)
nfa-∅-is-empty (x :: s) r = ⊥-elim (nfa-∅-is-empty s (extractOrL r))

The language with just the empty string has two states. The starting state which is final
and an error state where all transitions end up:

nfa-ε : Nfa 2
nfa-ε = record { S = 0F ; δ = λ _ _ → J 1F K ; F = J 0F K }

1F-is-error : (s : String) → ¬ (T (accepts nfa-ε 1F s))

38

1F-is-error [] z = z
1F-is-error (x :: s) z = ⊥-elim (1F-is-error s (extractOrL z))

nfaε-correct : (s : String) → ¬ (s ≡ ε) → ¬ (nfa-ε ↓ s)
nfaε-correct [] a b = a refl
nfaε-correct (x :: s) a b = 1F-is-error s (extractOrL b)

The language with just a single character string has three states. The construction is de-
fined based on an input character c. The first state is the starting state. The second state
is the only final state. The third state is an error state. There is only one transition with
character c from the starting state leading to the second state. All other transitions end up
in the error state:

nfa-c : (c : Σ) → Nfa 3
nfa-c c = record { S = 0F ; δ = δ ; F = J 1F K }

where
δ : Fin 3 → Σ → Subset 3
δ 0F k with k ?

= c
... | yes p = J 1F K
... | no ¬p = J 2F K
δ _ _ = J 2F K

2F-is-error : ∀{c s} → ¬ (T (accepts (c-nfa c) 2F s))
2F-is-error {c} {x :: s} d =

contradiction (extractOrL d) (2F-is-error {c} {s})

nfac-correct : ∀{c}{s} → nfa-c c ↓ s → s ≡ (c :: [])
nfac-correct {c} {x :: []} d with x ?

= c
... | yes p = cong (_:: []) p
nfac-correct {c} {x :: y :: s} d with x ?

= c
... | yes p = contradiction d (2F-is-error {c} {x :: y :: s})
... | no ¬p = contradiction d (2F-is-error {c} {x :: y :: s})

3.3.2 Regular expressions to NFAs
We now prove that for every regular expression there is a NFA which recognizes the same
language.
For 〈〉, the equivalent NFA is nfa-∅.
For 〈ε〉, the equivalent NFA is nfa-ε.
For Atom c, we build nfa-c passing c.
For (R + S), using union, we build the union of the two NFAs generated inductively

39

based on R and S.
For (R · S), using concat, we build the concatenation of the two NFAs generated
inductively based on R and S.
For R *, using star, we build the star closure of the NFA generated inductively based
on R.
We conclude that a string belongs to the language of a regular expression if and only if the
generated NFA accepts it, as a consequence of the correctness proofs nfa-∅-is-empty,
nfaε-correct, nfac-correct, union-correct, concat-correct,
star-correct2 and star-correct1:

toNFA : (R : RegExp)
→ ∃2 λ (n : N) (nfa : Nfa n)

→ ∀ (s : String)
→ s ∈ R ⇔ nfa ↓ s

toNFA 〈〉 = 1 , nfa-∅ , λ s → record
{ to = λ ()
; from = λ nfa↓s → ⊥-elim (nfa-∅-is-empty s nfa↓s)
}

toNFA 〈ε〉 = 2 , nfa-ε , iff
where
iff : (s : String)

→ s ∈ 〈ε〉 ⇔ nfa-ε ↓ s
iff [] = record { to = λ _ → tt ; from = λ _ → in-ε }
iff (x :: s) = record
{ to = λ ()
; from = λ nfa↓xs → ⊥-elim (nfaε-correct (x :: s) (λ ()) nfa↓xs)
}

toNFA (Atom c) = 3 , nfa-c c , λ s → to IFF from
where
to : ∀{s}

→ s ∈ Atom c
→ nfa-c c ↓ s

to (in-c c) with c ?
= c

... | yes p = tt

... | no ¬p = ¬p refl

from : ∀{s}
→ nfa-c c ↓ s
→ s ∈ Atom c

40

from {s} nfa↓s rewrite nfac-correct {c} {s} nfa↓s = in-c c

toNFA (R + F) with toNFA R | toNFA F
... | n , A , w∈R⇔A↓w | m , B , w∈F⇔B↓w =

suc n N.+ m , union A B , λ s → to s IFF (from s)
where
to : (s : String)

→ s ∈ (R + F)
→ union A B ↓ s

to s (in+l s∈R)
= _⇔_.to (union-correct s) (inj1 (_⇔_.to (w∈R⇔A↓w s) s∈R))

to s (in+r s∈F)
= _⇔_.to (union-correct s) (inj2 (_⇔_.to (w∈F⇔B↓w s) s∈F))

from : (s : String)
→ union A B ↓ s
→ s ∈ (R + F)

from s A∪B↓s with _⇔_.from (union-correct s) A∪B↓s
...| inj1 A↓s = in+l (_⇔_.from (w∈R⇔A↓w s) A↓s)
...| inj2 B↓s = in+r (_⇔_.from (w∈F⇔B↓w s) B↓s)

toNFA (R · F) with toNFA R | toNFA F
... | n , A , w∈R⇔A↓w | m , B , w∈F⇔B↓w =

suc n N.+ m , concat A B , λ s → to s IFF (from s)
where
to : (s : String)

→ s ∈ (R · F)
→ concat A B ↓ s

to _ (in-· {u} {v} u∈R v∈F) =
⇔.from (concat-correct (u ++ v))
(u
, v
, refl
, _⇔_.to (w∈R⇔A↓w u) u∈R
, _⇔_.to (w∈F⇔B↓w v) v∈F)

from : (s : String)
→ concat A B ↓ s
→ s ∈ (R · F)

from s AB↓s with _⇔_.to (concat-correct s) AB↓s
... | u , v , s≡uv , A↓u , B↓v rewrite s≡uv =

41

in-· (_⇔_.from (w∈R⇔A↓w u) A↓u) (_⇔_.from (w∈F⇔B↓w v) B↓v)

toNFA (R *) with toNFA R
... | n , A , s∈R⇔A↓s =
suc n , star A , λ s → (to s) IFF (from s)
where
to : (s : String)

→ s ∈ (R *)
→ star A ↓ s

to _ in-*1 = tt
to _ (in-*2 {u} {v} u∈R v∈R*) =

star-correct1 {_} {u} {v} (_⇔_.to (s∈R⇔A↓s u) u∈R , (to v v∈R*))

lenv<lenau++v : ∀{u v} → (a : Σ) → length v < length (a :: u ++ v)
lenv<lenau++v {[]} {v} a = ≤-refl
lenv<lenau++v {u :: us} {v} a = ≤-step (lenv<lenau++v u)

star-from-WF : (s : String)
→ star A ↓ s
→ Acc _<_ (length s)
→ s ∈ (R *)

star-from-WF [] _ _ = in-*1
star-from-WF (a :: s) A*↓as (acc go) with star-correct2 a s A*↓as
... | u , v , as≡uv , A↓au , A*↓v rewrite as≡uv =

in-*2 (_⇔_.from (s∈R⇔A↓s (a :: u)) A↓au)
(star-from-WF v A*↓v (go (length v) (lenv<lenau++v a)))

from : (s : String)
→ star A ↓ s
→ s ∈ (R *)

from s A*↓s = star-from-WF s A*↓s (<-wellFounded (length s))

3.3.3 Decidable
The previous result is not just a theorem. It produces a perfectly well-defined NFA which
accepts the same language of a given regular expression. We can use it to decide whether
or not a string v belongs to L(F).
Given a regular expression, we generate the equivalent NFA, compute the result and return
to the regular expressions membership relation with the “⇔” roperty:

42

∈? : (v : String) → (F : RegExp) → Dec (v ∈ F)
v ∈? F with toNFA F
... | _ , A , v∈F⇔A↓v with A ↓? v
... | yes A↓v = yes (_⇔_.from (v∈F⇔A↓v v) A↓v)
... | no ¬A↓v =

no λ v∈F → contradiction (_⇔_.to (v∈F⇔A↓v v) v∈F) ¬A↓v

For example, by evaluating the expression aabaa ∈? a*b?a*, Agda provides the
following membership proof:

yes
(in-·

(in-· (in-*2 (in-c a) (in-*2 (in-c a) in-*1))
(in+l (in-c b)))

(in-*2 (in-c a)
(in-*2 (in-c a) (in-*2 (in-c a) in-*1))))

This approach does the same job as the derivatives one previously described. However, in
this case, the generated NFA can be reused multiple times for the same regular expressions.
Furthermore, it can be transformed into a deterministic automaton that would have a linear
time complexity match.

3.4 Pumping Lemma and a Non-regular Langauge
In this section, we present the Pumping Lemma, a property that holds for any finite state
automaton. It can be used to prove that a language is not regular. In fact, we present
a simple context-free language which is not recognizable by any finite state automaton.
We go back to determinism and use DFAs instead of NFAs to simplify the proofs, but as
mentioned, these computation models are equivalent and so they both respect this property.

3.4.1 Path
As hinted, we will use the pigeonhole principle and we will apply it to the path of visited
states. Given a string s and a DFA A with m states, we define a function which computes
the path of visited states during the execution of A with s as input. The path is a vector of
Fin m elements of size equal to the length of s. We only consider past states, so when
the string is empty, the list of past states is empty.

path : ∀{m} → Dfa m
→ Fin m

43

→ (s : String)
→ Vec (Fin m) (length s)

path A q [] = []
path A q (c :: s) = q :: (path A (δ A q c) s)

We can prove a simple lemma which states that the state at an index i in the path is equal
to the state computed by the extended transition function executed with a prefix of length
i of the string:

lemmaPath : ∀{m}
→ (dfa : Dfa m)
→ (s : String)
→ (i : Fin (length s))
→ (q : Fin m)
→ path dfa q s ! i ≡ δˆ dfa q (take (toN i) s)

lemmaPath dfa (c :: s) fzero q = refl
lemmaPath dfa (c :: s) (fsuc i) q = lemmaPath dfa s i (δ dfa q c)

3.4.2 Power
A string elevated to the power of n is its self-concatenation n times. We define it recur-
sively based on the exponent:

ˆ : String → N → String
s ˆ zero = []
s ˆ (suc n) = s ++ s ˆ n

For example, the string abc elevated to the power of 2 generates abcabc.
The power operation has some interesting properties, similar to the ones about natural
numbers.
For example, snsm is equal to sn+m:

ˆ-join-+ : (s : String) (n m : N)
→ (s ˆ n) ++ (s ˆ m) ≡ s ˆ (n + m)

ˆ-join-+ s 0F 0F = refl
ˆ-join-+ s 0F (suc m) = refl
ˆ-join-+ s (suc n) m rewrite

++-assoc s (s ˆ n) (s ˆ m)
| sym (ˆ-join-+ s n m) = refl

Another example is that (sn)m is equal to sn∗m:

44

ˆ-join-* : (s : String) (n m : N)
→ (s ˆ n) ˆ m ≡ s ˆ (n * m)

ˆ-join-* s 0F 0F = refl
ˆ-join-* s 0F (suc m) = ˆ-join-* s 0F m
ˆ-join-* s (suc n) 0F = ˆ-join-* s n 0F
ˆ-join-* s (suc n) (suc m) rewrite

ˆ-join-* s (suc n) m
| ++-assoc s (s ˆ n) (s ˆ (m + n * m))
| ˆ-join-+ s n (m + n * m)
| *-comm n (suc m)
| *-comm m n
| sym (+-assoc n m (n * m))
| sym (+-assoc m n (n * m))
| +-comm m n = refl

3.4.3 Pigeonhole principle
The pigeonhole principle states that given two sets A, B and a function f : A → B, if B
has less elements than A then there are at least two distinct elements i, j in A such that
f(i) ≡ f(j).
In Agda, finite sets can be easily described using the Fin n type, and so the pigeonhole
proof makes use of this type. The proof can be found in the standard library of Agda. Here
is its statement:

pigeonhole : ∀ {m n} → m < n → (f : Fin n → Fin m) →
∃2 λ i j → i 6≡ j × f i ≡ f j

We apply the pigeonhole principle to vectors. Given a vector of size m containing elements
of type Fin n, if n < m then there are at least two distinct indexes which point to equal
elements. We obtain the following property:

pigeonholeVec : ∀{n m}
→ (vec : Vec (Fin n) m)
→ n < m
→ ∃[i] ∃[j] (

i <f j
× toN j ≤ n
× vec ! i ≡ vec ! j)

We will use these indexes to divide a given string into three substrings. Here we define a
lemma about this operation. Given a string s and two numbers i, j such that i < j ≤ |s|,
we can divide s in three substrings x, y, z which respect the following constraints:

45

• x is the prefix of s of length i

• y is not empty

• xy is the prefix of s of length j

Here is the statement:

tripartition : (s : String)
→ (i j : Fin (length s))
→ i <f j
→ ∃[x] ∃[y] ∃[z] (

s ≡ x ++ y ++ z
× y 6≡ []
× x ≡ take (toN i) s
× (x ++ y) ≡ take (toN j) s
× length (x ++ y) ≡ toN j

)

3.4.4 Returning to same state
When a DFA starts at q and returns to q after running a string s, then it always returns to
the same state for any power of s. We show that if δˆ(q, s) ≡ q, then for any number m,
we have that δˆ(q, sm) ≡ q:

returns-back : ∀{n}
→ (dfa : Dfa n)
→ (s : String)
→ (q : Fin n)
→ q ≡ δˆ dfa q s
→ ∀(m : N) → q ≡ δˆ dfa q (s ˆ m)

returns-back dfa s q eq zero = refl
returns-back dfa s q eq (suc m) with
returns-back dfa s q eq m | lemma-δˆ dfa s (s ˆ m) q

... | ind | lm2 rewrite sym eq = trans ind (sym lm2)

We extend returns-back lemma by adding a prefix and a suffix and beginning at the
starting state:

pumping-same-state : ∀{n} {dfa : Dfa n}
→ (s : String)
→ (t : String)

46

→ (u : String)
→ let p = δˆ dfa (S dfa) s in

p ≡ δˆ dfa p t
→ dfa ↓ (s ++ t ++ u)
→ ∀ (m : N) → dfa ↓ (s ++ t ˆ m ++ u)

pumping-same-state {n} {dfa} s t u p≡δˆpt dfa↓stu m with
returns-back dfa t (δˆ dfa (S dfa) s) p≡δˆpt m

... | pump with lemma-δˆ dfa (s ++ t) u (S dfa)
| lemma-δˆ dfa s (t ˆ m) (S dfa)
| lemma-δˆ dfa s t (S dfa)
| lemma-δˆ dfa (s ++ (t ˆ m)) u (S dfa)

... | d1 | d2 | d3 | d4 rewrite
trans pump (sym d2)

| sym (trans p≡δˆpt (sym d3))
| ++-assoc s t u
| ++-assoc s (t ˆ m) u
| trans d1 (sym d4) = dfa↓stu

3.4.5 Pumping Lemma
Given a DFAAwithm states, there exists a number n such that, for every stringw ∈ L(A),
if |w| > n then w can be divided into three substrings x, y, z such that:

• w ≡ xyz

• y 6≡ ε

• |xy| ≤ n

• ∀k : xykz ∈ L(A)

One n for which we can be sure this property holds is simply m, the number of states of
the DFA.
We use the pigeonholeVec principle applied to the path. Then we use the computed
indexes to divide the string with tripartition which generates the strings x, y and z
such that y 6≡ ε and |xy| ≤ m.
The pigeonholeVec also tells us that there are two repeated states in two different
positions in the path which correspond exactly at the end of the computation of x and the
end of the computation of y. In fact, with lemmaPath we obtain that: δˆ(S, x) ≡ q and
δˆ(q, y) ≡ q.
Since δˆ(q, z) ∈ F , using pumping-same-state we conclude that ∀k : xykz ∈
L(A):

47

pumpingLemma : {m : N}
→ (dfa : Dfa m)
→ ∃[n] (
∀(w : String)
→ dfa ↓ w
→ n < length w
→ ∃[x] ∃[y] ∃[z] (

w ≡ x ++ y ++ z
× y 6≡ ε
× length (x ++ y) ≤ n
× ∀(k : N) → dfa ↓ (x ++ y ˆ k ++ z)

)
)

pumpingLemma {m} dfa = m , base
where
base : ∀(w : String)

→ dfa ↓ w
→ m < length w
→ ∃[x] ∃[y] ∃[z] (

w ≡ x ++ y ++ z
× y 6≡ []
× length (x ++ y) ≤ m
× ∀(k : N) → dfa ↓ (x ++ y ˆ k ++ z)

)
base w dfa↓w m<len_w with

pigeonholeVec (path dfa (S dfa) w) m<len_w
... | i , j , i<j , j≤n , eq with

tripartition w i j i<j
... | x , y , z , w≡xyz , y 6≡ε , x≡takeI , xy≡takeJ , len_xy≡J with

lemmaPath dfa w i (S dfa) | lemmaPath dfa w j (S dfa)
... | lp1 | lp2 rewrite

sym x≡takeI | sym xy≡takeJ | sym eq | sym len_xy≡J | w≡xyz =
x , y , z , (refl , y6≡ε , j≤n

, pumping-same-state x y z
(trans (sym lp1) (trans lp2 (lemma-δˆ dfa x y (S dfa))))
dfa↓w

)

For example, we can define a DFA accepting binary strings representing multiples of 5
and then find a substring that can be repeated indefinitely and still preserve the multiple
property. The DFA has 6 states where 0 is the starting state and 5 is the error state:

48

0start 1 2 3 4

0

1 0

1 0

1 0

1 0

1

dfa-binary-multiples-5 = make-dfa 6 0F 5F (0F :: []) (
(0F , 0 , 0F)

:: (0F , 1 , 1F)
:: (1F , 0 , 2F)
:: (1F , 1 , 3F)
:: (2F , 1 , 0F)
:: (2F , 0 , 4F)
:: (3F , 1 , 2F)
:: (3F , 0 , 1F)
:: (4F , 1 , 4F)
:: (4F , 0 , 3F)
:: []

)

When we apply the pumping lemma on it with the string 1110011, which is equal to 115
base-ten, we get that x = 11, y = 100 and z = 11. If we remove y with the power 0,
we get that 1111 is accepted, as expected since 1111 is equal to 15 base-ten. If we use for
example the power 3, we get the number 1110010010011, which is a multiple of 5 as it is
equal to 7315 base-ten:

-- [115] dec = [1110011] bin

pumpLem = proj2
(pumpingLemma dfa-binary-multiples-5)
(1 :: 1 :: 1 :: 0 :: 0 :: 1 :: 1 :: [])
tt
(s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))

x : String
x = 1 :: 1 :: []

y : String
y = 1 :: 0 :: 0 :: []

49

z : String
z = 1 :: 1 :: []

acc1 : dfa-binary-multiples-5 ↓ (x ++ y ˆ 0 ++ z)
acc1 = tt

acc2 : dfa-binary-multiples-5 ↓ (x ++ y ˆ 3 ++ z)
acc2 = tt

3.4.6 A Non-regular language
A language not recognizable by any DFA is called Non-regular language. For example,
the context-free language L = {1n0n| n ≥ 0} is not regular. We show that the assumption
that there is a DFA that recognizes L is absurd.

Here is the definition of the language:

I = '1' :: []
O = '0' :: []

L : N → String
L n = (I ˆ n) ++ (O ˆ n)

_∈L : String → Set
x ∈L = ∃[n] (x ≡ L n)

We say that a string x belongs to the language L if there exists a number n such that
x ≡ 1n0n. We define the following lemmas:

exponents-equal : ∀{n m}
→ (I ˆ n ++ O ˆ m) ∈L
→ n ≡ m

char-ˆ-length-++ : (c : Σ) (n : N) (t : String)
→ length ((c :: []) ˆ n ++ t) ≡ n + length t

char-ˆ-length : (c : Σ) (n : N)
→ length ((c :: []) ˆ n) ≡ n

xyz-to-power : ∀{n x y z}
→ (I ˆ n) ++ (O ˆ n) ≡ x ++ y ++ z

50

→ length (x ++ y) ≤ n
→ y 6≡ ε
→ ∃[l] ∃[p] ∃[q] (

x ≡ I ˆ l
× y ≡ I ˆ p
× 0 < p
× z ≡ (I ˆ q) ++ (O ˆ n))

absurd-sum : (l p n q : N)
→ 1 ≤ p
→ l + p * (1 + n) + q 6≡ n

Assume there is a DFA D with m states with the same language of L.
The string 1m0m belongs to L and so by assumption, it is also accepted by D. Its length is
exactly two times the number of states of D, so we satisfy the condition m < |1m0m|.
Using the pumping lemma on D and 1m0m, we know that there are x, y, z, such that
1m0m ≡ xyz, y is not the empty string, |xy| ≤ m, and ∀k : xykz ∈ L(A).
The lemma xyz-to-power says that since 1m0m ≡ xyz and |xy| ≤ m and y is not
empty, then there are l, p > 0, q, such that x = 1l, y = 1p, z = 1q0m.
We pump y with k = 1+m and get 1l(1p)1+m1q0m, which can be simplified to 1l+p∗(1+m)+q0m

using the power lemmas. Now, since this string is accepted by D, by assumption it also
belongs to L.
Our exponents-equal lemma states that if a string of the form 1a0b belongs to L,
then a must be equal to b. We apply this lemma on the string 1l+p∗(1+m)+q0m and obtain
l + p ∗ (1 +m) + q ≡ m.
We know that p > 0 and that l and q are natural numbers. By assuming that l = 0, p = 1
and q = 0, which are the lowest possible values (any other values would just increase the
inequality), we still conclude that 1 +m ≡ m, absurd.
And here is the proof in Agda:

L-not-regular : ¬ ∃2 λ (n : N) (dfa : Dfa n)
→ ∀ (s : String)
→ s ∈L ⇔ dfa ↓ s

L-not-regular (n , dfa , s∈L⇔dfa↓s) with proj2
(pumpingLemma dfa)
(L n)
(_⇔_.to (s∈L⇔dfa↓s (L n)) (n , refl))
(subst (suc n ≤_)

51

(sym (L-length=n+n n))
(lemmaN≤ n (dfa-states>0 dfa))

)
... | x , y , z , eq , neq , lm , pump with xyz-to-power eq lm neq
... | l , p , q , x≡Iˆl , y≡Iˆp , 0<p , z≡Iˆq++Iˆn rewrite
y≡Iˆp | x≡Iˆl | z≡Iˆq++Iˆn with
⇔.from
(s∈L⇔dfa↓s (I ˆ l ++ I ˆ p ˆ (1 + n) ++ I ˆ q ++ O ˆ n))
(pump (1 + n))

... | fst , snd rewrite
ˆ-join-* I p (1 + n)

| sym (++-assoc (I ˆ l) (I ˆ (p * (1 + n))) (I ˆ q ++ O ˆ n))
| ˆ-join-+ I l (p * (1 + n))
| sym (++-assoc (I ˆ (l + (p * (1 + n)))) (I ˆ q) (O ˆ n))
| ˆ-join-+ I (l + p * (1 + n)) q

= absurd-sum l p n q 0<p (exponents-equal (fst , snd))

52

Chapter 4

Conclusion

We formalized regular expressions and NFAs and proved the correctness of two different
approaches for solving the matching problem. We showed that finite-state automata are
closed under union, concatenation, and star operations and that the regular expressions
language class is a subset of the NFAs language class. One further development could be
to prove the inverse transformation. Our development ended with the formalization of the
pumping lemma, which we used to prove the limits of these computation models. There
is also a pumping lemma for the immediate superset of regular languages, context-free
languages. The formalization of this class of languages could also be a future extension of
the project.

An important conclusion that can be drawn from all this work is that sophisticated
type-systems can be used as powerful tools that enforce writing correct code, to such an
extent that compilers can be turned into theorem provers. Agda is a clear example of this.
On a proof assistant level, the constructive evidence approach used in Agda helps under-
stand the flow of proofs flawlessly. In some cases, though, this also requires to provide con-
structions for many other seemingly obvious properties, which other theorem provers solve
automatically. However, the Agda standard library is immense and it exposes plenty of
well-known principles and properties. For instance, the file Data.Nat.Properties
contains many properties about natural numbers and counts 2000+ lines of proofs.
When firstly approaching Agda, the learning curve can be very steep, but with a solid base
in functional programming and Haskell, it becomes straightforward.

53

Bibliography

[1] Wadler, Philip and Wen Kokke. Programming Language Foundations in Agda. Avail-
able at http://plfa.inf.ed.ac.uk. 2019.

[2] Agda Wiki. Chalmers and Gothenburg University, 2.4 edn. (2014),
http://wiki.portal.chalmers.se/agda

[3] Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2013). Introduction to Au-
tomata Theory, Languages, and Computation (3rd ed.).

[4] Janusz A. Brzozowski, Derivatives of regular expressions, JOURNAL OF THE ACM,
1964, 11, 481–494

54

